
The Embedded I/O Company

TPMC501-SW-42
VxWorks Device Driver

32 Channel 16 Bit ADC

Version 1.3.x

User Manual
Issue 1.3.1
March 2005

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek / Germany
Phone: +49-(0)4101-4058-0 Fax: +49-(0)4101-4058-19
e-mail: info@tews.com www.tews.com

TEWS TECHNOLOGIES LLC
1 E. Liberty Street, Sixth Floor Reno, Nevada 89504 / USA
Phone: +1 (775) 686 6077 Fax: +1 (775) 686 6024
e-mail: usasales@tews.com www.tews.com

TPMC501-SW-42
32 Channel 16 Bit ADC

VxWorks Device Driver

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

1999-2005 by TEWS TECHNOLOGIES GmbH
IndustryPack is a registered trademark of SBS Technologies, Inc

Issue Description Date
1.0 First Issue April1999
1.1 New PCI Configuration July 1999
1.2 Support for x86 target June 2000
1.3 General Revision November 2003

1.3.1 Release.txt added, Issue layout changed March 8, 2005

TPMC501-SW-42 - VxWorks Device Driver Page 2 of 20

TPMC501-SW-42 - VxWorks Device Driver Page 3 of 20

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Install the driver to VxWorks system..5
2.2 Hardware dependent Configuration..5
2.3 Including the driver in VxWorks ..5
2.4 Example application ...6
2.5 Special installation for Intel x86 based targets..7

3 I/O SYSTEM FUNCTIONS.. 8
3.1 tp501Drv() ..8
3.2 tp501DevCreate()...9

4 I/O INTERFACE FUNCTIONS.. 11
4.1 open() ...11
4.2 close()...13
4.3 read() ..14
4.4 ioctl() ..16

4.4.1 FIOSTARTSEQ Setup and start the sequencer ..17
4.4.2 FIOSTOPSEQ Stop the sequencer ...17
4.4.3 EXAMPLE for control functions...18

5 APPENDIX.. 20
5.1 Predefined Symbols..20
5.2 Error Codes ...20

TPMC501-SW-42 - VxWorks Device Driver Page 4 of 20

1 Introduction
The TPMC501-SW-42 VxWorks device driver software allows the operation of the TPMC501 PMC
conforming to the VxWorks I/O system specification. This includes a device-independent basic I/O
interface with open(), close(), read(), and ioctl() functions.

The TPMC501 driver includes following functions:

 read actual input value

 start and setup the input sequencer

 stop the input sequencer

TPMC501-SW-42 - VxWorks Device Driver Page 5 of 20

2 Installation
The software is delivered on a 3½" HD diskette.

Following files are located on the diskette:

tp501drv.c TPMC501 Driver Source
tp501exa.c TPMC501 Device Driver Example
tpmc501.h TPMC501 Driver Include File
Makefile Makefile for TPMC501 Device Driver and Example
tp501pci.c TPMC501 PCI MMU mapping for Intel x86 based targets
tpxxxhwdep.c Collection of hardware dependent functions
tpxxxhwdep.h include for hardware dependent functions
Release.txt Information about the Device Driver Release

For installation the files have to be copied to the desired target directory.

2.1

2.2

2.3

Install the driver to VxWorks system
To install the TPMC501 device driver to the VxWorks system following steps have to be done:

 Build the object code of the TPMC501 device driver

 Link or load the driver object file to the VxWorks system

 Call the tp501Drv() function to install the device driver.

Hardware dependent Configuration
The device driver supports the on board PMC slots of the Motorola MVME2600 by default.

The device driver software supports also TEWS PMC carrier boards and others. The system has to be
setup to guarantee the following points:

 full access to the PMC I/O area of the card (register address space)

 full access to PMC memory area of the card (correction data address space)

 interrupt must be connected

Including the driver in VxWorks
How to include the device drive in the VxWorks system is described in the VxWorks and Tornado
manuals.

TPMC501-SW-42 - VxWorks Device Driver Page 6 of 20

2.4 Example application
The example application uses the MVME2600/3600 BSP. If an older version of the BSP (1.1/0 up to
1.1/2) is used, the value _OLD_BSP_ in TP501TST.C must be defined. If this value is undefined the
newer BSP will be used.

Using a Motorola PMC-span, the PCI/PCI Bridge has to be initialized on the span.

Using other carriers the initialization matching has to be adapted to the BSP.

The example code holds two functions setting and reading the PCI configuration registers. The first
function (PCIsetupTPMC501()) sets up the PCI configuration registers, the TPMC501 registers will
appear at the specified address.

The second function (searchPCI()) will search for the TPMC501 and read and calculate the modules
registers and correction data address, which must be used, when installing the driver.

TPMC501-SW-42 - VxWorks Device Driver Page 7 of 20

2.5 Special installation for Intel x86 based targets
The TPMC501 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU. If the contents of this macro are equal to I80386, I80386 or PENTIUM special Intel x86
conforming code and function calls will be included.

The second problem for Intel x86 based platforms can’t be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’t map PCI memory spaces of devices
which are not used by the BSP, the required PCI memory spaces can’t be accessed.

To solve this problem a MMU mapping entry has to be added for the required TPMC501 PCI memory
spaces prior the MMU initialization (usrMmuInit()) is done.

Please examine the BSP documentation or contact the BSP Vendor whether the BSP perform
automatic PCI and MMU configuration or not. If the PCI and MMU initialization is done by the BSP the
function tp501PciInit() won’t be included and the user can skip to the following steps.

The C source file tp501pci.c contains the function tp501PciInit(). This routine finds out all TPMC501
devices and adds MMU mapping entries for all used PCI memory spaces. Please insert a call to this
function after the PCI initialization is done and prior to MMU initialization (usrMmuInit()).

If the Tornado 2.0 project facility is used, the right place to call the function tp501PciInit() is at the end
of the function sysHwInit() in sysLib.c (can be opened from the project Files window).

If Tornado 1.0.1 compatibility tools are used insert the call to tp501PciInit() at the beginning of the root
task (usrRoot()) in usrConfig.c.

Be sure that the function is called prior to MMU initialization otherwise the TPCM501 PCI spaces
remains unmapped and an access fault occurs during driver initialization.

Please insert the following call at a suitable place in either sysLib.c or usrConfig.c:

 tp501PciInit();

To link the driver object modules to VxWorks, simply add all necessary driver files to the project. If
Tornado 1.0.1 Standard BSP Builds... is used add the object modules to the macro MACH_EXTRA
inside the BSP Makefile (MACH_EXTRA = tp501drv.o tp501pci.o ...).

The Function tp501PciInit() was designed for and tested on generic Pentium targets. If another
BSP is used please refer to BSP documentation or contact the technical support for required
adaptation.

If strange errors occur after system startup with the new build system please carry out a
VxWorks build clean and build all.

TPMC501-SW-42 - VxWorks Device Driver Page 8 of 20

3 I/O system functions
This chapter describes the driver-level interface to the I/O system. The purpose of these functions is to
install the driver in the I/O system, add and initialize devices.

3.1 tp501Drv()

NAME

tp501Drv() - installs the TPMC501 driver in the I/O system and initializes the driver.

SYNOPSIS

STATUS tp501Drv(void)

DESCRIPTION

This function installs the TPMC501 driver in the I/O system, allocates driver resources and initializes
them.

The call of this function is the first thing the user has to do before adding any device to the system or
performing any I/O request.

RETURNS

OK or ERROR (if the driver cannot be installed)

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TPMC501-SW-42 - VxWorks Device Driver Page 9 of 20

3.2 tp501DevCreate()

NAME

tp501DevCreate() - adds a TPMC501 device to the system and initializes device hardware.

SYNOPSIS

STATUS tp501DevCreate
 (
 char *name, /* name of the device to create */
 unsigned long RegAddr, /* physical device register address */
 unsigned long CalAddr, /* physical device calibration data address */
 unsigned long vector, /* interrupt vector */
 unsigned long level, /* interrupt level */
 unsigned long type /* device type [TPMC501_nn] */
)

DESCRIPTION

This routine is called to add a device to the system that will be serviced by the TPMC501 driver. This
function must be called before performing any I/O request to this driver.

PARAMETER

The name of the device is selected by the string, which is deployed by this routine in the parameter
name.

The argument RegAddr specifies the address of the modules registers (see TPMC501-DOC User
Manual and PCI Configuration example).

The argument CalAddr specifies the address of the modules correction data memory (see TPMC501-
DOC User Manual and PCI Configuration example).

The argument vector and level are board dependent. They specify the interrupt vector and the
interrupt level.

The argument type specifies the module type mounted to the address. There are predefined symbols
for this argument in tpmc501.h. Allowed values are TPMC501_10, TPMC501_11, TPMC501_12,
TPMC501_13, TPMC501_20, TPMC501_21, TPMC501_22 and TPMC501_23.

TPMC501-SW-42 - VxWorks Device Driver Page 10 of 20

EXAMPLE

#include "tpmc501.h"

...

/*---
 Create the device "/tpmc501" with the registers at
 address 81000000h and the calibration data at C1000000h
 The mounted module is a TPMC501-10
 ---*/
status = tp501DevCreate ("/tpmc501",

0x81000000,
0xC1000000,
0xF,
0xF,
TPMC501_10);

...

RETURNS

OK or ERROR (if the driver is not installed or the device already exists or any other error occurred
during the creation)

TPMC501-SW-42 - VxWorks Device Driver Page 11 of 20

4 I/O interface functions
This chapter describes the interface to the basic I/O system.

4.1 open()

NAME

open() - opens a device or file.

SYNOPSIS

int open
 (
 const char *name, /* name of the device to open */
 int flags, /* not used for TPMC501 driver, must be 0 */
 int mode /* not used for TPMC501 driver, must be 0 */
)

DESCRIPTION

Before I/O can be performed to the TPMC501 device, a file descriptor must be opened by invoking the
basic I/O function open().

PARAMETER
The parameter name selects the device which shall be opened.

The parameters flags and mode are not used and must be 0.

EXAMPLE

...

/*---
 Open the device named "/tpmc501" for I/O
 ---*/
fd = open("/tpmc501", 0, 0);

...

TPMC501-SW-42 - VxWorks Device Driver Page 12 of 20

RETURNS

A device descriptor number or ERROR (if the device does not exist or no device descriptors are
available)

INCLUDES
ioLib.h, semLib.h

SEE ALSO

ioLib, basic I/O routine - open()

TPMC501-SW-42 - VxWorks Device Driver Page 13 of 20

4.2 close()

NAME

close() - closes a device or file.

SYNOPSIS

int close
 (
 int fd, /* descriptor to close */
)

DESCRIPTION

This function closes opened devices.

EXAMPLE

int retval;

...

/*------------------
 Close the device
 ------------------*/
retval = close(fd);

...

RETURNS

A device descriptor number or ERROR (if the device does not exist or no device descriptors are
available)

INCLUDES
ioLib.h, semLib.h

SEE ALSO

ioLib, basic I/O routine - close()

TPMC501-SW-42 - VxWorks Device Driver Page 14 of 20

4.3 read()

NAME

read() – reads a value from the specified TPMC501 device.

SYNOPSIS

int read
 (
 int fd, /* device descriptor from opened TPMC501 device */
 char *buffer, /* pointer to an I/O buffer */
 size_t maxbytes /* not used */
)

DESCRIPTION

This function starts the conversion for one input channel and returns the value.

PARAMETER
The parameter fd is a file descriptor specifying the device which shall be used.

The parameter buffer points to the special I/O structure TP501_IO_BUFFER (refer to tpmc501.h).

The argument maxbytes is not used for the device driver.

data structure TP501_IO_BUFFER:
typedef struct
{
 int Channel; /* Channel number */
 int Gain; /* Gain for channel */
 unsigned long flags; /* Special flags */
 long value; /* Return value */
} TP501_IO_BUFFER;

The argument Channel specifies the channel to use.

The argument Gain specifies the gain, which shall be used.

The flags specify the mode to use. Allowed values are:

TP501_DIFFMODE Enable Differential Mode
TP501_SNGLMODE Enable Single Ended Mode
TP501_CORRENA Enable Data Correction
TP501_CORRDIS Disable Data Correction

The read value will be returned in value.

TPMC501-SW-42 - VxWorks Device Driver Page 15 of 20

EXAMPLE

int fd;
int result;
TP501_IO_BUFFER buf;

...

/*---
 Read the actual value of the input differential channel 1,
 the gain shall be 2 and the value shall be corrected
 ---*/
buf.Channel = 1;
buf.Gain = 2;
buf.flags = TP501_CORRENA | TP501_DIFFMODE;
result = read (fd, &buf, 0);

...

RETURNS

ERROR if an error occurred

INCLUDE FILES

ioLib.h, semLib.h, tpmc501.h

SEE ALSO

ioLib, basic I/O routine - read()

TPMC501-SW-42 - VxWorks Device Driver Page 16 of 20

4.4 ioctl()

NAME

ioctl() - performs an I/O control function.

SYNOPSIS

int ioctl
(
int fd, /* device descriptor from opened TPMC501 device */
int function, /* function code */
int arg /* optional function dependent argument */
)

DESCRIPTION

Special I/O operation that do not fit to the standard basic I/O calls will be performed by calling the
ioctl() function with a specific function code and an optional function dependent argument.

PARAMETER

The parameter fd specifies the device descriptor of the opened TPMC501 device.

The parameter function selects the action, which will be executed by the driver.

The structure arg depends on the function (see description below).

RETURNS
OK or ERROR (if the device descriptor does not exist or the function code is unknown or an error
occurred)

INCULDES
ioLib.h, semLib.h, tpmc501.h

SEE ALSO
ioLib, basic I/O routine - ioctl(), VxWorks Programmer’s Guide: I/O System

TPMC501-SW-42 - VxWorks Device Driver Page 17 of 20

4.4.1 FIOSTARTSEQ Setup and start the sequencer
This function reads the values of the specified input lines and stores the input values into a user
supplied FIFO. For this operation the argument arg points to a structure named TP501_IOC_BUF.
This structure is defined in tpmc501.h.

Data structure TP501_IOC_BUF:
typedef struct
{
 unsigned short cycletime; /* sequencer cycletime */
 unsigned long act_channels; /* number of active channels */
 TP501_IO_BUFFER *chan_setup; /* channel configurations */
 unsigned long buf_size; /* size of buffer */
 unsigned long buf_stat; /* buffer state / error */
 unsigned long putIdx; /* Index to put data */
 unsigned long getIdx; /* Index to read data */
 long *buffer; /* pointer to buffer */
} TP501_IOC_BUF

The cycletime argument specifies the length of a cycle. This value is specified in 100 s steps.

The argument act_channels specifies the number of active channels.

The pointer chan_setup points to an array of data structures specifying the channel setups. The used
data structure is the same used by the read command (for more information refer to the read
command).

The argument buf_size specifies the size of the input FIFO.

The actual state and errors will be shown in the buf_stat argument. The following bits are defined.

TP501_SEQ_BUF_OVERRUN The user supplied FIFO is full and new data
can not be stored

TP501_SEQ_DATA_OVERFLOW Old data not read by the software when new
values are ready

TP501_SEQ_TIMER_ERR The specified cycle time is not long enough to
convert the specified channels

TP501_SEQ_INST_RAM_ERR The sequencer is started, but no channel has
been selected.

The arguments putIdx and getIdx are used to specify the actual read and write pointer into the FIFO.
putIdx shall be changed by the driver and just be read from the application. getIdx must be move by
the application after reading a set of input values and is only read by the driver.

The pointer buffer points to the user supplied memory area where the sequencer input data will be
stored.

4.4.2 FIOSTOPSEQ Stop the sequencer
This command stops a running sequence cycles. This command needs no argument.

TPMC501-SW-42 - VxWorks Device Driver Page 18 of 20

4.4.3 EXAMPLE for control functions
#define SBUF_SIZE 0x200

int fd;
STATUS result;
TP501_IOC_BUF seq_buf;
TP501_IO_BUFFER seq_rw_par[2];
long seq_data_buf[SBUF_SIZE];

...

/*---
 Start sequence using channel 1 and 3
 Channel 1:
 differential
 data correction on
 gain = 1
 Channel 3:
 single-ended
 data correction off
 gain = 5
 ---*/
seq_buf.cycletime = 10000; /* Cycletime 1s */
seq_buf.buffer = seq_data_buf;
seq_buf.act_channels = 2;
seq_buf.buf_size = SBUF_SIZE / seq_buf.act_channels;
seq_buf.chan_setup = seq_rw_par;
seq_rw_par[0].Channel = 1;
seq_rw_par[0].Gain = 1;
seq_rw_par[0].flags = TP501_CORRENA | TP501_DIFFMODE;
seq_rw_par[1].Channel = 3;
seq_rw_par[1].Gain = 5;
seq_rw_par[1].Mode = TP501_CORRDIS | TP501_SNGLMODE;
result = ioctl(fd, FIOSTARTSEQ , (int)&cntrl_par);
if (result == OK)
{
 /* Sequencer started */
}
else
{
 /* Error when starting the sequencer */
}

...

TPMC501-SW-42 - VxWorks Device Driver Page 19 of 20

/*---
 Stop Sequencer
 ---*/
result = ioctl(fd, FIOSTOPSEQ , 0);
if (result == OK)
{
 /* Sequencer started */
}
else
{
 /* Error when starting the sequencer */
}

TPMC501-SW-42 - VxWorks Device Driver Page 20 of 20

5 Appendix
This chapter describes the symbols which are defined in the file tpmc501h.

5.1

5.2

Predefined Symbols
Ioctl Function Codes

FIOSTARTSEQ 0x00000100 Start and setup the sequencer
FIOSTOPSEQ 0x00000101 Stop the sequencer

Module Types

TPMC501_10 10 TPMC501-10
TPMC501_11 11 TPMC501-11
TPMC501_12 12 TPMC501-12
TPMC501_13 13 TPMC501-13
TPMC501_20 20 TPMC501-20
TPMC501_21 21 TPMC501-21
TPMC501_22 22 TPMC501-22
TPMC501_23 23 TPMC501-23

Error Codes
If the device driver creates an error the error codes are stored in the errno. They can be read with the
VxWorks function errnoGet() or printErrno().

S_tp501Drv_ICHAN 0x05010001 Illegal channel number specified
S_tp501Drv_IGAIN 0x05010002 Illegal gain specified
S_tp501Drv_MODBUSY 0x05010003 Module is busy (the sequencer is running)
S_tp501Drv_TIMEOUT 0x05010004 Hardware timed out
S_tp501Drv_ICMD 0x05010005 Illegal I/O command

