
The Embedded I/O Company

TPMC501-SW-65
Windows 2000/XP Device Driver

Optically Isolated 32 Channel 16 Bit ADC

Version 1.0.x

User Manual
Issue 1.0

August 2004

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek / Germany
Phone: +49-(0)4101-4058-0 Fax: +49-(0)4101-4058-19
e-mail: info@tews.com www.tews.com

TEWS TECHNOLOGIES LLC
1 E. Liberty Street, Sixth Floor Reno, Nevada 89504 / USA
Phone: +1 (775) 686 6077 Fax: +1 (775) 686 6024
e-mail: usasales@tews.com www.tews.com

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 2 of 19

TPMC501-SW-65
Optically Isolated 32 Channel 16 Bit ADC

Windows 2000/XP Device Driver

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2004 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0 First Issue August 4, 2004

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 3 of 19

Table of Content
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Software Installation...5
2.1.1 Windows 2000 / XP..5
2.1.2 Confirming Windows 2000 / XP Installation...5

3 TPMC501 DEVICE DRIVER PROGRAMMING .. 6
3.1 TPMC501 Files and I/O Functions ...6

3.1.1 Opening a TPMC501 Device ...6
3.1.2 Closing a TPMC501 Device...8
3.1.3 TPMC501 Device I/O Control Functions..9

3.1.3.1 IOCTL_TP501_READ ..11
3.1.3.2 IOCTL_TP501_START_SEQ...13
3.1.3.3 IOCTL_TP501_STOP_SEQ...17
3.1.3.4 IOCTL_TP501_CONF_MOD_TYPE ..18

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 4 of 19

1 Introduction
The TPMC501-SW-65 Windows WDM (Windows Driver Model) device driver is a kernel mode driver
which allows the operation of the TPMC501 on an Intel or Intel-compatible x86 Windows 2000 or
Windows XP operating system.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceIoControl) provide
the basic interface for opening and closing a resource handle and for performing device I/O control
operations.

The TPMC501 device driver supports the following features:

 reading converted AD values from a specified channel
 configuring the sequencer for a free running measurement
 direct transfer of converted AD values to a dynamic ring buffer in the user space of the application

 task (Direct I/O)
 AD data correction with factory calibration data stored in the onboard EEPROM

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 5 of 19

2 Installation
The software is delivered on a 3½" HD diskette.

Following files are located on the diskette:

TPMC501.sys Windows driver binary
TPMC501.h Header-file with IOCTL code definitions
TPMC501.inf Windows installation script
TPMC501-SW-65.pdf This document
\Example\Example.c Microsoft Visual C example application

2.1 Software Installation

2.1.1 Windows 2000 / XP
This section describes how to install the TPMC501 Device Driver on a Windows 2000 / XP operating
system.

After installing the TPMC501 card(s) and boot-up your system, Windows 2000 / XP setup will show a
"New hardware found" dialog box.

1. The "Upgrade Device Driver Wizard" dialog box will appear on your screen.
Click "Next" button to continue.

2. In the following dialog box, choose "Search for a suitable driver for my device".
Click "Next" button to continue.

3. In Drive A, insert the TPMC501 driver disk; select "Disk Drive" in the dialog box.
Click "Next" button to continue.

4. Now the driver wizard should find a suitable device driver on the diskette.
Click "Next" button to continue.

5. Complete the upgrade device driver and click "Finish" to take all the changes effect.

6. Now copy all needed files (tpmc501.h, TPMC501-SW-65.pdf) to the desired target directories.

After successful installation the TPMC501 device driver will start immediately and creates devices
(TPMC501_1, TPMC501_2 ...) for all recognized TPMC501 modules.

2.1.2 Confirming Windows 2000 / XP Installation
To confirm that the driver has been properly loaded in Windows 2000 / XP, perform the following
steps:

1. From Windows 2000 / XP, open the "Control Panel" from "My Computer".

2. Click the "System" icon and choose the "Hardware" tab, and then click the "Device
Manager" button.

3. Click the "+" in front of "Other Devices".
The driver "TPMC501 32(16) Channel 16 bit ADC" should appear.

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 6 of 19

3 TPMC501 Device Driver Programming
The TPMC501-SW-65 Windows WDM device driver is a kernel mode device driver.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceIoControl) provide
the basic interface for opening and closing a resource handle and for performing device I/O control
operations.

All of these standard Win32 functions are described in detail in the Windows Platform SDK
Documentation (Windows base services / Hardware / Device Input and Output).

For details refer to the Win32 Programmers Reference of your used programming tools (C++, Visual
Basic etc.)

3.1 TPMC501 Files and I/O Functions
The following section does not contain a full description of the Win32 functions for interaction with the
TPMC501 device driver. Only the required parameters are described in detail.

3.1.1 Opening a TPMC501 Device
Before you can perform any I/O the TPMC501 device must be opened by invoking the CreateFile
function. CreateFile returns a handle that can be used to access the TPMC501 device.

HANDLE CreateFile(
 LPCTSTR lpFileName,
 DWORD dwDesiredAccess,
 DWORD dwShareMode,
 LPSECURITY_ATTRIBUTES lpSecurityAttributes,
 DWORD dwCreationDistribution,
 DWORD dwFlagsAndAttributes,
 HANDLE hTemplateFile
);

Parameters

LPCTSTR lpFileName
This parameter points to a null-terminated string, which specifies the name of the TPMC501 to
open. The lpFileName string should be of the form \\.\TPMC501_x to open the device x. The
ending x is a one-based number. The first device found by the driver is \\.\TPMC501_1, the
second \\.\TPMC501_2 and so on.

DWORD dwDesiredAccess
This parameter specifies the type of access to the TPMC501.
For the TPMC501 this parameter must be set to read-write access (GENERIC_READ |
GENERIC_WRITE)

DWORD dwShareMode
Set of bit flags that specify how the object can be shared. Set to 0.

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 7 of 19

LPSECURITY_ATTRIBUTES lpSecurityAttributes
This argument is a pointer to a security structure. Set to NULL for TPMC501 devices.

DWORD dwCreationDistribution
Specifies the action to take on existing files, and which action to take when files do not exist.
TPMC501 devices must be always opened OPEN_EXISTING.

DWORD dwFlagsAndAttributes
Specifies the file attributes and flags for the file. This value must be set to
FILE_FLAG_OVERLAPPED for TPMC501 devices (see also the device I/O function
IOCTL_TP501_START_SEQ).

HANDLE hTemplateFile
This value must be NULL for TPMC501 devices.

Return Value

If the function succeeds, the return value is an open handle to the specified TPMC501 device. If the
function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call
GetLastError.

Example

See Also

CloseHandle(), Win32 documentation CreateFile()

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 8 of 19

3.1.2 Closing a TPMC501 Device
The CloseHandle function closes an open TPMC501 handle.

BOOL CloseHandle(
 HANDLE hDevice;
);

Parameters

HANDLE hDevice
Identifies an open TPMC501 handle.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Example

See Also

CreateFile (), Win32 documentation CloseHandle ()

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 9 of 19

3.1.3 TPMC501 Device I/O Control Functions
The DeviceIoControl function sends a control code directly to a specified device driver, causing the
corresponding device to perform the specified operation.

BOOL DeviceIoControl(
 HANDLE hDevice, // handle to device of interest
 DWORD dwIoControlCode, // control code of operation to perform
 LPVOID lpInBuffer, // pointer to buffer to supply input data
 DWORD nInBufferSize, // size of input buffer
 LPVOID lpOutBuffer, // pointer to buffer to receive output data
 DWORD nOutBufferSize, // size of output buffer
 LPDWORD lpBytesReturned, // pointer to variable to receive output byte count
 LPOVERLAPPED lpOverlapped // pointer to overlapped structure for asynchronous
 // operation
);

Parameters

hDevice
Handle to the TPMC501 that is to perform the operation.

dwIoControlCode
Specifies the control code for the operation. This value identifies the specific operation to be
performed. The following values are defined in TPMC501.h :

Value Meaning
IOCTL_TP501_READ Read a converted AD value
IOCTL_TP501_START_SEQ Setup and start the sequencer
IOCTL_TP501_STOP_SEQ Stop the sequencer
IOCTL_TP501_CONF_MOD_TYPE Configure which model type is mounted

See below for more detailed information on each control code.

To use these TPMC501 specific control codes the header file TPMC501.h must be included in
the application

lpInBuffer
Pointer to a buffer that contains the data required to perform the operation.

nInBufferSize
Specifies the size of the buffer pointed to by lpInBuffer.

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 10 of 19

lpOutBuffer
Pointer to a buffer that receives the operation’s output data.

nOutBufferSize
Specifies the size of the buffer in bytes pointed to by lpOutBuffer.

lpBytesReturned
Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to
by lpOutBuffer. A valid pointer is required.

lpOverlapped
Pointer to an overlapped structure. This parameter is required because the TPMC501 device
driver uses overlapped I/O.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

See Also

Win32 documentation DeviceIoControl()

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 11 of 19

3.1.3.1 IOCTL_TP501_READ
This TPMC501 control function starts an AD conversion on the specified channel and returns the
converted value (16 bit sign extended) in a long word buffer to the caller. The Parameter lpOutBuffer
passes a pointer to this buffer to the device driver. Note that the first value read after startup might be
corrupted due to an error of the ADC.

The lpInBuffer parameter passes a pointer to a channel configuration structure (TP501_CHAN_CONF)
to the driver which contains parameter required to perform the operation.

typedef struct {
 ULONG ChanToUse; // channel number to use 1..32
 ULONG gain; // gain to use for this channel
 ULONG flags; // flags to control the operation
} TP501_CHAN_CONF, *PTP501_CHAN_CONF;

Members

ChanToUse
Specifies the channel number at which to start the AD conversion. Valid channels for single-
ended mode are 1..32. For differential mode only the channels from 1...16 are possible.

gain
Specifies the gain for this AD conversion. Valid gains are 1, 2, 5, 10 for TPMC501-10/-12/-20/-
22 and 1, 2, 4, 8 for TPMC501-11/-13/-21/-23.

flags
Set of bit flags that controls the AD conversion. The following flags could be OR’ed:

Flag Meaning
TP501_DIFF If this bit is set the ADC input works in differential mode

otherwise in single-ended (default).
TP501_CORR Perform an offset and gain correction with factory

calibration data stored in the TPMC501 EEPROM.

Example

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 12 of 19

Error Codes

ERROR_INVALID_PARAMETER This error will be returned if the size of the read/write buffer
is too small or the gain parameter is invalid.

ERROR_IO_TIMEOUT ADC conversion timed out.

ERROR_MEMBER_NOT_IN_GROUP Invalid channel number.

ERROR_DEVICE_BUSY This error occurres if the sequencer is still running. Please
stop the sequencer before executing this function.

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl(), TPMC501 Hardware User Manual

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 13 of 19

3.1.3.2 IOCTL_TP501_START_SEQ
This overlapped TPMC501 control function starts the internal sequencer to perform a continuous AD
conversion of the specified channels. After each conversion cycle the device driver stores the AD
value directly into a user supplied ring buffer. A list of active channels, the sequencer cycle time and
other parameter which controls the conversion must be passed with the following job description
structure to the device driver.

typedef struct {
 ULONG CycleTime; // sequencer cycle time in 100 µs steps
 ULONG NumOfBufferPages; // number of AD data pages
 ULONG NumOfChannels; // number of active channels
 TP501_CHAN_CONF ChanConf[TP501_MAX_CHAN];
} TP501_JOB_DESC, *PTP501_JOB_DESC;

Members

CycleTime
Specifies the repeat frequency of the sequencer in 100 µs steps. Each time the sequencer timer
reaches the programmed cycle time a new AD conversion of all active channels is started. Valid
values are in the range from 100 µs to 6.5535 seconds.

Keep in mind Windows 2000/XP is not a Real-Time operation system. The minimum usable
cycle time varies from system to system. For instance the minimum cycle time for a Pentium-S
with 166 MHz is 5 ms (CycleTime = 50)

NumOfBufferPages
Specifies the maximum number of “pages” in the ring buffer. A page contains the AD values of
all active channels from a sequencer cycle. The ring buffer looks like a two-dimensional array:
buffer[NumOfBufferPages][NumOfChannels]

NumOfChannels
Specifies the number of active channels for this job. The maximum number is 32.

ChanConf[TP501_MAX_CHAN]
This array of channel configuration structures specifies the configuration of the active channels.
The channlel configuration defines the channel number, the gain and some flags. Please refer
to IOCTL_TP501_READ for detailed description of this structure. The ordering of channels in a
ring buffer page is the same as defined in this array.

Ring Buffer Layout

The user supplied ring buffer contains the converted AD values of each sequencer cycle. This buffer is
directly mapped into the system virtual space of the device driver (Direct I/O) and filled after each
sequencer interrupt with the new AD values. That is the reason why this function was performed as an
overlapped (asynchronous) operation (see also Win32 documentation). As long as the device I/O
control function is pending the device driver is able to lock the user buffer in memory and access this
pages from the interrupt service routine. To stop the sequencer and finish device I/O control function
execute the IOCTL_TP501_STOP_SEQ control function.

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 14 of 19

typedef struct {
 ULONG status; // sequencer error status
 ULONG PutIndex; // index of the next page to write by the driver
 ULONG GetIndex; // index of the next page to read by the user task
 long buffer[1]; // dynamic expandable array of AD values
} TP501_RING_BUFFER, *PTP501_RING_BUFFER;

Members

status
This field contains the actual sequencer error status. If status is 0 no error is pending. A set of
bits specifies the error condition.
Value Meaning
TP501_BUF_OVERRUN This bit indicates a ring buffer overrun. The error

 occurred if there is no space in ring buffer to write the new
AD data. In this case the new AD values are dismissed. The
sequencer was not stopped.

TP501_DATA_OVERFLOW This indicates an overrun in the sequencer data RAM. The
 error occurred if the driver is too slow to read the data in
 time. The sequencer was stopped after this error occurred.
TP501_TIMER_ERR Sequencer timer error (see also TPMC501 hardware
 manual). The sequencer was stopped after this error
 occurred.
TP501_INST_RAM_ERR Sequencer instruction RAM error (see also TPMC501
 hardware manual). The sequencer was stopped after this
 error occurred.

Keep in mind to check this status before each reading.

PutIndex
Index of the next ring buffer page to write by the device driver. The index is incremented by 1
(device driver) after each write. At the ring buffer limit it is set to 0 again. The user application
only read this index.

GetIndex
Index of the next ring buffer page to read by the application task. The index is incremented by 1
(application) after each read. At the ring buffer limit it is set to 0 again. The ring buffer is empty if
PutIndex is equal to GetIndex.

buffer[1]
This is a dynamic expandable array which holds the converted AD values. The real dimension
of this buffer is given by NumOfBufferPages * NumOfChannles. Therefore don’t use this type
in a sizeof() function to determine the size of this array.
See also the code example to understand the structure of the ring buffer and the access
methods.

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 15 of 19

Example

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 16 of 19

Error Codes

ERROR_INVALID_PARAMETER This error will be returned if the size of the read/write buffer
is too small or at least one of the parameters is invalid.

ERROR_MEMBER_NOT_IN_GROUP Invalid channel number.

ERROR_DEVICE_BUSY This error occurs if the sequencer is still running. Please
stop the sequencer before executing this function.

See Also

Win32 documentation DeviceIoControl(), TPMC501 Hardware User Manual

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 17 of 19

3.1.3.3 IOCTL_TP501_STOP_SEQ
This TPMC501 control function stops the running sequencer and finishes the outstanding (overlapped)
IOCTL_TP501_START_SEQ device control function.

Example

See Also

Win32 documentation DeviceIoControl(), TPMC501 Hardware User Manual

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 18 of 19

3.1.3.4 IOCTL_TP501_CONF_MOD_TYPE
This TPMC501 control function specifies the modeltype of the TPMC501. The lpInBuffer parameter
passes a pointer to an unsigned long value to the driver which contains parameters required to
perform the operation. The IpOutBuffer parameter will not be used. This function can not be called if
the sequencer is started. The unsigned long value specifies the model type, the following values are
valid:

value description
TP501_TYPE_10 TPMC501-10 (Gain 1/2/5/10, +/-10V, Front I/O)
TP501_TYPE_11 TPMC501-11 (Gain 1/2/4/8, +/-10V, Front I/O)
TP501_TYPE_12 TPMC501-12 (Gain 1/2/5/10, 0-10V, Front I/O)
TP501_TYPE_13 TPMC501-13 (Gain 1/2/4/8, 0-10V, Front I/O)
TP501_TYPE_20 TPMC501-20 (Gain 1/2/5/10, +/-10V, Back I/O)
TP501_TYPE_21 TPMC501-21 (Gain 1/2/4/8, +/-10V, Back I/O)
TP501_TYPE_22 TPMC501-22 (Gain 1/2/5/10, 0-10V, Back I/O)
TP501_TYPE_23 TPMC501-23 (Gain 1/2/4/8, 0-10V, Back I/O)

This function must be called before any other I/O control function is called. This function must
be used to tell the driver what kind of TPMC501 is used.

Example

TPMC501-SW-65 – Windows 2000/XP Device Driver Page 19 of 19

Error Codes

ERROR_INVALID_PARAMETER This error will be returned if the size of the read/write buffer
is too small or the module type is invalid.

See Also

Win32 documentation DeviceIoControl(), TPMC501 Hardware User Manual

