
The Embedded I/O Company

TPMC501-SW-82
Linux Device Driver
32 Channel 16 Bit ADC

Version 1.3.x

User Manual
Issue 1.3.2
August 2008

TEWS TECHNOLOGIES GmbH TEWS TECHNOLOGIES LLC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49-(0)4101-4058-0
Fax: +49-(0)4101-4058-19
e-mail: info@tews.com

9190 Double Diamond Parkway,
Suite 127, Reno, NV 89521, USA
www.tews.com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TPMC501-SW-82 - Linux Device Driver Page 2 of 30

TPMC501-SW-82
Linux Device Driver

32 Channel 16 Bit ADC

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2000-2008 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0 First Issue October 24, 2001
1.1 New ioctl() function TP501_IOCSMODTYPE May 14, 2002
1.2 Distribution format has changed December 17, 2003
1.3.0 Kernel 2.6.x Support March 10, 2005
1.3.1 Filelist modified, New Address TEWS LLC, general revision November 08, 2006
1.3.2 Installation description modified, read() parameter corrected August 25, 2008

TPMC501-SW-82 - Linux Device Driver Page 3 of 30

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Build and install the device driver...5
2.2 Uninstall the device driver ...6
2.3 Install device driver into the running kernel ..6
2.4 Remove device driver from the running kernel ...6
2.5 Change Major Device Number ...7

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 8
3.1 open() ...8
3.2 close()...10
3.3 read() ..11
3.4 ioctl() ..14

3.4.1 TP501_IOCGREADPARAM...16
3.4.2 TP501_IOCSEQSTOP...18
3.4.3 TP501_IOCSSEQSETUP ..19
3.4.4 TP501_IOCGSEQREAD..22
3.4.5 TP501_IOCGSEQIMMREAD...24
3.4.6 TP501_IOCSMODTYPE..26

4 DIAGNOSTIC.. 28

TPMC501-SW-82 - Linux Device Driver Page 4 of 30

1 Introduction
The TPMC501-SW-82 Linux device driver allows the operation of a TPMC501 ADC PMC on Linux
operating systems.

The TPMC501 device driver includes the following features:

read value from a selected ADC channel
use sequencer mode for continuously read from selected channels
correction of input values with the factory programmed correction data
select hardware supported gains

In case of difficulties during driver installation please contact TEWS TECHNOLOGIES.

The TPMC501-SW-82 device driver supports the modules listed below:

TPMC501 Optically Isolated 32 Channel 16 Bit ADC PMC

To get more information about the features and use of the supported devices it is recommended to
read the manuals listed below.

TPMC501 Hardware User manual
TPMC501 Engineering Manual

TPMC501-SW-82 - Linux Device Driver Page 5 of 30

2 Installation
The directory TPMC501-SW-82 on the distribution media contains the following files:

TPMC501-SW-82-1.3.2.pdf This manual in PDF format
TPMC501-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
Release.txt Release information
ChangeLog.txt Release history

The GZIP compressed archive TPMC501-SW-82-SRC.tar.gz contains the following files and
directories:

Directory path ‘./tpmc501/’:

tpmc501.c Driver source code
tpmc501def.h Driver include file
tpmc501.h Driver include file for application program
Makefile Device driver make file
makenode Script for device node creation
include/config.h Driver independent library header file
include/tpxxxhwdep.c Low level hardware access functions source file
include/tpxxxhwdep.h Access functions header file
include/tpmodule.c Driver independent library
include/tpmodule.h Driver independent library header file
example/tpmc501exa.c Example application
example/Makefile Example application makefile

In order to perform an installation, extract all files of the archive TPMC501-SW-82.tar.gz to the desired
target directory.

Login as root and change to the target directory

Copy tpmc501.h to /usr/include

2.1 Build and install the device driver
Login as root

Change to the target directory

To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

To update the device driver’s module dependencies, enter:

depmod -aq

TPMC501-SW-82 - Linux Device Driver Page 6 of 30

2.2 Uninstall the device driver
Login as root

Change to the target directory

To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

2.3 Install device driver into the running kernel
To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tpmc501drv

After the first build or if you are using dynamic major device allocation it’s necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a device file system (devfs or sysfs with udev) then you have to skip
running the makenode script. Instead of creating device nodes from the script the driver itself
takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TPMC501 found. The first TPMC501
module can be accessed with device node /dev/tpmc501_0, the second module with device node
/dev/tpmc501_1, the third TPMC501 module with device node /dev/tpmc501_2 and so on.

The assignment of device nodes to physical TPMC501 modules depends on the search order of the
PCI bus driver.

2.4 Remove device driver from the running kernel
To remove the device driver from the running kernel login as root and execute the following
command:

modprobe –r tpmc501drv

If your kernel has enabled devfs or sysfs (udev), all /dev/tpmc501_x nodes will be automatically
removed from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tpmc501drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe –r again.

TPMC501-SW-82 - Linux Device Driver Page 7 of 30

2.5 Change Major Device Number
This paragraph is only for Linux kernels without DEVFS installed. The TPCM501 driver use dynamic
allocation of major device numbers per default. If this isn’t suitable for the application it’s possible to
define a major number for the driver.

To change the major number edit the file tpmc501def.h, change the following symbol to appropriate
value and enter make install to create a new driver.

TPMC501_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#define TPMC501_MAJOR 122

TPMC501-SW-82 - Linux Device Driver Page 8 of 30

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system.

3.1 open()

NAME

open() opens a file descriptor.

SYNOPSIS

#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask. Create the value by the bitwise OR
of the appropriate parameters (using the | operator in C). See also the GNU C Library documentation
for more information about the open function and open flags.

EXAMPLE

int fd;

fd = open(“/dev/tpmc501_0”, O_RDWR);
if (fd < 0)
{

/* handle open error conditions */
}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

TPMC501-SW-82 - Linux Device Driver Page 9 of 30

ERRORS

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TPMC501-SW-82 - Linux Device Driver Page 10 of 30

3.2 close()

NAME

close() closes a file descriptor.

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

. . .

if (close(fd) != 0) {
/* handle close error conditions */

}

RETURNS

The normal return value from close is 0. In case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TPMC501-SW-82 - Linux Device Driver Page 11 of 30

3.3 read()

NAME

read() reads from a device.

SYNOPSIS

#include <unistd.h>

ssize_t read(int filedes, void *buffer, size_t size)

DESCRIPTION

The read function reads an ADC value from the specified channel.

A pointer to the callers read buffer TP501_READBUF and the size of this structure are passed by the
parameters buffer and size to the device.

The TP501_READBUF structure has the following layout:

typedef struct
{

unsigned short channel;
unsigned short gain;
unsigned short flags;
long value;

} TP501_READBUF, *PTP501_READBUF;

channel
This value specifies the ADC channel that will be used. Allowed values are 1 to 32 for single-
ended input and 1 to 16 for differential input.

gain
Specifies the input gain that will be used. The following table shows the allowed values. These
values are predefined in ‘tpmc501.h’.

Name TPMC501-10/-12/-20/-22 TPMC501-11/-13/-21/-23
TP501_GAIN1 gain = 1 gain = 1
TP501_GAIN2 gain = 2 gain = 2
TP501_GAIN4 not supported gain = 4
TP501_GAIN5 gain = 5 not supported
TP501_GAIN8 not supported gain = 8
TP501_GAIN10 gain = 10 not supported

TPMC501-SW-82 - Linux Device Driver Page 12 of 30

flags
This value is an ORed value of the flags shown in the following table.

Name Meaning
TP501_FL_DIFF If this flag is set, the driver will use differential input

signal.
If the flag is not set, the driver will use single-ended
input signal.

TP501_FL_CORR If this flag is set, the driver will correct the ADC input
value with the factory programmed correction data.
If this flag is not set, the driver will return the ADC
input.

TP501_FL_FAST If this flag is set, the driver will start a conversion on the
last programmed channel, with the last selected gain
and the last selected input mode. The parameters gain,
channel and the flag TP501_FL_DIFF will be ignored if
this flag is set. If this flag is used, the hardware coded
settling time is not needed and not used, this makes
the access faster.
If the flag is not set, the driver will work in the normal
mode.

value
This parameter returns the converted ADC value.

EXAMPLE

#include <tpmc501.h>

int hCurrent;
ssize_t NumBytes;
TP501_READBUF ADCBuf;
…
/***
Read channel 5 with differential input
use gain 2
correct the input data

***/
ADCBuf.channel = 5;
ADCBuf.gain = TP501_GAIN2;
ADCBuf.flags = TP501_FL_DIFF | TP501_FL_CORR;

NumBytes = read(hCurrent, &ADCBuf, sizeof(ADCBuf));
if (NumBytes >= 0)

printf("\nADC Value = %ld\n", ADCBuf.value);
else

printf("\nRead failed --> Error = %d\n", errno);

TPMC501-SW-82 - Linux Device Driver Page 13 of 30

RETURNS

On success read returns a positive value. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

RETURNS

On success read returns the size of the structure TP501_READBUF. In case of an error, a value of –1
is returned. The global variable errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the size of the read
buffer is too small.

EFAULT Invalid pointer to the read buffer
EBUSY The sequencer mode is active on the specified device.
ETIME The settling or conversion exceeds the supposed range.
ENOTYPEINIT Driver specific error (150) – The module type has not been set. (Use

ioctl-function TP501_IOCSMODTYPE)

SEE ALSO

GNU C Library description – Low-Level Input/Output

TPMC501-SW-82 - Linux Device Driver Page 14 of 30

3.4 ioctl()

NAME

ioctl() – device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tpmc501.h:

Value Meaning
TP501_IOCGREADPARAM Get module parameters including module type and

the factory programmed correction values.
TP501_IOCSEQSTOP Stop the sequencer
TP501_IOCSSEQSETUP Setup and start the sequencer
TP501_IOCGSEQREAD Read ADC data from sequencer data RAM,

synchronized on the sequencer cycle
TP501_IOCGSEQIMMREAD Read ADC data from sequencer data RAM, make

an immediate read, use the latest values. This
read is asynchronous to the sequencer clock
cycle.

TP501_IOCSMODTYPE Setup model type.

See below for more detailed information on each control code.

Note: To use these TPMC501 specific control codes the header file tpmc501.h must be included
in the application!

TPMC501-SW-82 - Linux Device Driver Page 15 of 30

RETURNS

On success, zero is returned. In the case of an error, a value of –1 is returned. The global variable
errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is also returned if the requested
ioctl function is unknown. Please check the argument request.

Other function dependant error codes will be described for each ioctl code separately. Note, the
TPMC501 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TPMC501-SW-82 - Linux Device Driver Page 16 of 30

3.4.1 TP501_IOCGREADPARAM

NAME

TP501_IOCGREADPARAM - Get the module parameters

DESCRIPTION

This ioctl function returns modules parameters. This includes the module type and the factory
programmed correction data.

A pointer to the callers parameter buffer (TP501_PARABUF) is passed by the parameter argp to the
driver.

The TP501_PARABUF structure has the following layout:

typedef struct
{

int ModuleType;
signed short OffsCorr[4];
signed short GainCorr[4];

} TP501_PARABUF, *PTP501_PARABUF;

ModuleType
This parameter returns the module type. ‘10’ will be returned for TPMC501-10, ‘11’ will be
returned for TPMC501-11 and so on.

OffsCorr
This array returns the factory programmed offset correction data, which is used if the
TP501_FL_CORR flag is set. The index of the array specifies the gain.

Value Gain
0 1
1 2
2 4/5
3 8/10

GainCorr
This array returns the factory programmed gain correction data, which is used if the
TP501_FL_CORR flag is set. The index of the array specifies the gain.

Value Gain
0 1
1 2
2 4/5
3 8/10

TPMC501-SW-82 - Linux Device Driver Page 17 of 30

EXAMPLE

#include <tpmc501.h>

int hCurrent;
int result;
TP501_PARABUF ParamBuf;

result = ioctl(hCurrent, TP501_IOCGREADPARAM, &ParamBuf);
if (result >= 0)
{

printf("\nModule type = TPMC501-%02d\n",
ParamBuf.ModuleType);

printf("Offset Error = %d, %d, %d, %d\n",
ParamBuf.OffsCorr[0],
ParamBuf.OffsCorr[1],
ParamBuf.OffsCorr[2],
ParamBuf.OffsCorr[3]);

printf("Gain Error = %d, %d, %d, %d\n",
ParamBuf.GainCorr[0],
ParamBuf.GainCorr[1],
ParamBuf.GainCorr[2],
ParamBuf.GainCorr[3]);

}
else
{

printf("\nRead module parameter failed --> Error = %d\n", errno);
}

ERRORS

EINVAL Invalid pointer to the parameter buffer. Please check the argument
argp.

SEE ALSO

ioctl man pages

TPMC501-SW-82 - Linux Device Driver Page 18 of 30

3.4.2 TP501_IOCSEQSTOP

NAME

TP501_IOCSEQSTOP – Stop Sequencer Mode

DESCRIPTION

This ioctl function stops the sequencer mode.

EXAMPLE

#include <tpmc501.h>

int hCurrent;
int result;

result = ioctl(hCurrent, TP501_IOCSEQSTOP);
if (result >= 0)
{

printf("\nStopping sequencer successful\n");
}
else
{

printf("\nStopping sequencer failed --> Error = %d\n",
errno);

}

ERRORS

This ioctl function returns no function specific error codes.

SEE ALSO

ioctl man pages

TPMC501-SW-82 - Linux Device Driver Page 19 of 30

3.4.3 TP501_IOCSSEQSETUP

NAME

TP501_IOCSSEQSETUP - Setup and start the sequencer, enter sequencer mode

DESCRIPTION

This ioctl function sets up the TPMC501 to work in sequencer mode. The cycle time and the channel
configuration are set up.

A pointer to the callers parameter buffer (TP501_SEQSETBUF) is passed by the parameter argp to
the driver.

The TP501_SEQSETBUF structure has the following layout:

typedef struct
{

unsigned short cycleTime;
struct
{

unsigned short flags;
unsigned short gain;

} channel[TP501_SNGLCHANS];
} TP501_SEQSETBUF, *PTP501_SEQSETBUF;

cycleTime
This parameter specifies the cycle time that will be used. The value will be copied into the
sequencer timer register. The value has a resolution of 100μs steps. If this value is set to zero,
the sequencer will work in continuous mode.

structure channel
This array structure holds information for the channels. The index of the channel structure
specifies the channel. Index 0 is advised to channel 1, index 1 is advised to channel 2 and so
on. The array has 32 elements.

flags
This parameter is an ORed value of the following described flags.

Name Meaning
TP501_FL_DIFF If this flag is set, the driver will use differential input

signal.
If the flag is not set, the driver will use single-ended input
signal.

TP501_FL_CORR If this flag is set, the driver will correct the ADC input
value with the factory programmed correction data.
If this flag is not set, the driver will return the ADC input.

TPMC501-SW-82 - Linux Device Driver Page 20 of 30

TP501_FL_ENABLE If this flag is set the channel will be used in sequencer
mode.
If this flag is not set, the channel will be ignored in
sequencer mode.

gain
This parameter specifies the gain.

Name TPMC501-10/-12/-20/-22 TPMC501-11/-13/-21/-23
TP501_GAIN1 gain = 1 gain = 1
TP501_GAIN2 gain = 2 gain = 2
TP501_GAIN4 not supported gain = 4
TP501_GAIN5 gain = 5 not supported
TP501_GAIN8 not supported gain = 8
TP501_GAIN10 gain = 10 not supported

EXAMPLE

#include <tpmc501.h>

int hCurrent;
int result;
TP501_SEQSETBUF SeqSetBuf;

…

/***
Start sequencer with a cycle time of 1 sec
Enable following channels:

Channel 1: Gain=1, Correction enabled, single-ended
Channel 6: Gain=2, Correction disabled, differential

***/

SeqSetBuf.cycleTime = 10000; /* 10000 * 100μs */

for (i = 0; i < TP501_SNGLCHANS; i++)
{

SeqSetBuf.channel[i].flags = 0; /* disable channel */
}

SeqSetBuf.channel[0].flags = TP501_FL_ENABLE | TP501_FL_CORR;
SeqSetBuf.channel[5].flags = TP501_FL_ENABLE | TP501_FL_DIFF;

SeqSetBuf.channel[0].gain = TP501_GAIN1;
SeqSetBuf.channel[5].gain = TP501_GAIN2;

TPMC501-SW-82 - Linux Device Driver Page 21 of 30

result = ioctl(hCurrent, TP501_IOCSSEQSETUP, &SeqSetBuf);
if (result >= 0)
{

printf("\nStarting sequencer successful\n");
}
else
{

printf("\nStarting sequencer failed --> Error = %d\n", errno);
}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please check the argument
argp.

ENOTYPEINIT Driver specific error (150) – The module type has not been set.

SEE ALSO

ioctl man pages

TPMC501-SW-82 - Linux Device Driver Page 22 of 30

3.4.4 TP501_IOCGSEQREAD

NAME

TP501_IOCGSEQREAD – Read a set of data value synchronized with cycle time

DESCRIPTION

This ioctl function returns a set of ADC data. The function returns ADC values for the channels, which
had been enabled with the TP501_IOCSSEQSETUP function. The specified modes of the
TP501_IOCSSEQSETUP function are used.

A pointer to the callers parameter buffer (TP501_SEQREADBUF) is passed by the parameter argp to
the driver.

The TP501_SEQREADBUF structure has the following layout:

typedef struct
{

int overrunCount;
int error;
long values[TP501_SNGLCHANS];

} TP501_SEQREADBUF, *PTP501_SEQREADBUF;

overrunCount
This parameter returns the number of lost sequencer cycles. A value of ‘-1’ means there has not
been a valid cycle (only in error case), a value of ‘0’ means no data has been lost. If the value is
greater ‘0’, than value set(s) had been lost.

error
This value returns an ORed value of the following error flags. This value should be checked for
every call of the function.

Name Meaning
TP501_FL_HWOVERRUN The hardware has detected an overflow; the

data sequencer has not been serviced in one
cycle time.

TP501_FL_TIMERERR The hardware has signaled that the specified
cycle time is too short to make the specified
conversions.

TP501_FL_INSTRAMERR The hardware has detected an error in the
instruction RAM. (No channel selected)

TP501_FL_SWOVERRUN The driver can not make the data corrections
in one cycle time.

values
This array returns a full set of ADC values. Only the values of the channels selected in
TP501_IOCSSEQSETUP will be valid. The index specifies the channel. Index 0 is advised to
channel 1, index 1 is advised to channel 2 and so on. The array has 32 elements.

TPMC501-SW-82 - Linux Device Driver Page 23 of 30

EXAMPLE

#include <tpmc501.h>

int hCurrent;
int result;
TP501_SEQREADBUF SeqReadBuf;

…

/***
read values of the enabled channel 1 and 6

***/
result = ioctl(hCurrent, TP501_IOCGSEQREAD, &SeqReadBuf);
if (result >= 0)
{

printf("Error %04Xh - Overruns %d\n",
SeqReadBuf.error,
SeqReadBuf.overrunCount);

printf("Channel 1: %ld\n", SeqReadBuf.values[0]);
printf("Channel 6: %ld\n", SeqReadBuf.values[5]);

}
else
{

printf("\nReading values failed --> Error = %d\n", errno);
}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please check the argument
argp.

SEE ALSO

ioctl man pages

TPMC501-SW-82 - Linux Device Driver Page 24 of 30

3.4.5 TP501_IOCGSEQIMMREAD

NAME

TP501_IOCGSEQIMMREAD – Read a set of data value unsynchronized with cycle time

DESCRIPTION

This ioctl function returns a set of ADC data. The function returns ADC values for the channels, which
had been enabled with the TP501_IOCSSEQSETUP function. The specified modes of the
TP501_IOCSSEQSETUP function are used.

A pointer to the callers parameter buffer (TP501_SEQREADBUF) is passed by the parameter argp to
the driver.

The TP501_SEQREADBUF structure has the following layout:

typedef struct
{

int overrunCount;
int error;
long values[TP501_SNGLCHANS];

} TP501_SEQREADBUF, *PTP501_SEQREADBUF;

overrunCount
This parameter returns the number of lost sequencer cycles. A value of ‘-1’ means there has not
been a valid cycle since the last read, a value of ‘0’ means no data has been lost. If the value is
greater ‘0’, than value set(s) had been lost.

error
This value returns an ORed value of the following error flags. This value should be checked for
every call of the function.

Name Meaning
TP501_FL_HWOVERRUN The hardware has detected an overflow; the

data sequencer has not been serviced in one
cycle time.

TP501_FL_TIMERERR The hardware has signaled that the specified
cycle time is too short to make the specified
conversions.

TP501_FL_INSTRAMERR The hardware has detected an error in the
instruction RAM. (No channel selected)

TP501_FL_SWOVERRUN The driver can not make the data corrections
in one cycle time.

values
This array returns a full set of ADC values. Only the values of the channels selected in
TP501_IOCSSEQSETUP will be valid. The index specifies the channel. Index 0 is advised to
channel 1, index 1 is advised to channel 2 and so on. The array has 32 elements.

TPMC501-SW-82 - Linux Device Driver Page 25 of 30

EXAMPLE

#include <tpmc501.h>

int hCurrent;
int result;
TP501_SEQREADBUF SeqReadBuf;

…

/***
read values of the enabled channel 1 and 6

***/
result = ioctl(hCurrent, TP501_IOCGSEQIMMREAD, &SeqReadBuf);
if (result >= 0)
{

printf("Error %04Xh - Overruns %d\n",
SeqReadBuf.error,
SeqReadBuf.overrunCount);

printf("Channel 1: %ld\n", SeqReadBuf.values[0]);
printf("Channel 6: %ld\n", SeqReadBuf.values[5]);

}
else
{

printf("\nReading values failed --> Error = %d\n", errno);
}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please check the argument
argp.

SEE ALSO

ioctl man pages

TPMC501-SW-82 - Linux Device Driver Page 26 of 30

3.4.6 TP501_IOCSMODTYPE

NAME

TP501_IOCSMODTYPE - Setup model type

DESCRIPTION

This ioctl function sets up the TPMC501 model type. The driver will store the model type and will
return and correct ADC values depending from this value.

This function must be called before any read or sequencer access is done.

A pointer to the callers parameter buffer (TP501_TYPEBUF) is passed by the parameter argp to the
driver.

The TP501_TYPEBUF structure has the following layout:

typedef struct
{

int ModuleType; /* TPMC501 variant type */
} TP501_TYPEBUF, *PTP501_TYPEBUF;

ModuleType
This parameter specifies the model type. The following table shows the allowed values and the
corresponding module types.

value module type
10 TPMC501-10
11 TPMC501-11
12 TPMC501-12
13 TPMC501-13
20 TPMC501-20
21 TPMC501-21
22 TPMC501-22
23 TPMC501-23

TPMC501-SW-82 - Linux Device Driver Page 27 of 30

EXAMPLE

#include <tpmc501.h>

int hCurrent;
int result;
TP501_TYPEBUF TypeBuf;

…

/***
Setup model type as TPMC501-10
***/

TypeBuf.ModuleType = 10; /* TPMC501-10 */

result = ioctl(hCurrent, TP501_IOCSMODTYPE, &TypeBuf);
if (result >= 0)
{

printf("\nSetting module type successful\n");
}
else
{

printf("\nSetting module type failed --> Error = %d\n",
errno);

}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please check the argument
argp.

SEE ALSO

ioctl man pages

TPMC501-SW-82 - Linux Device Driver Page 28 of 30

4 Diagnostic
If the TPMC501 does not work properly it is helpful to get some status information from the driver
respective kernel.

The Linux /proc file system provides information about kernel, resources, driver, devices and so on.
The following screen dumps displays information of a correct running TPMC501 driver (see also the
proc man pages).

cat /proc/pci
…

Bus 0, device 9, function 0:
Class 1180: PCI device 10b5:9050 (rev 1).

IRQ 12.
Non-prefetchable 32 bit memory at 0xe7000000 [0xe700007f].
I/O at 0xe000 [0xe07f].
I/O at 0xd800 [0xd8ff].
Non-prefetchable 32 bit memory at 0xe6800000 [0xe68007ff].

cat /proc/devices
Character devices:

1 mem
2 pty
3 ttyp
4 ttyS
5 cua
7 vcs

10 misc
29 fb

128 ptm
136 pts
162 raw
254 tpmc501drv

cat /proc/interrupts
CPU0

0: 969329 XT-PIC timer
1: 4439 XT-PIC keyboard
2: 0 XT-PIC cascade
4: 2537 XT-PIC serial
8: 2 XT-PIC rtc

10: 14 XT-PIC ncr53c8xx
11: 5457 XT-PIC eth0
12: 924341 XT-PIC TPMC501
14: 58562 XT-PIC ide0
15: 5 XT-PIC ide1

TPMC501-SW-82 - Linux Device Driver Page 29 of 30

NMI: 0
ERR: 0
MIS: 0

cat /proc/ioports
…
03f6-03f6 : ide0
03f8-03ff : serial(auto)
0cf8-0cff : PCI conf1
d000-d07f : PCI device 1011:0014

d000-d07f : tulip
d400-d4ff : PCI device 1000:0001

d400-d47f : ncr53c8xx
d800-d8ff : PCI device 10b5:9050

d800-d8ff : TPMC501 (PCI)
e000-e07f : PCI device 10b5:9050
e800-e80f : PCI device 8086:7010

e800-e807 : ide0
e808-e80f : ide1

#cat /proc/iomem
00000000-0009ffff : System RAM
000a0000-000bffff : Video RAM area
000c0000-000c7fff : Video ROM
000f0000-000fffff : System ROM
00100000-03ffffff : System RAM

00100000-002327d1 : Kernel code
002327d2-0031bdcb : Kernel data

e4000000-e4ffffff : PCI device 1002:4758
e5800000-e580007f : PCI device 1011:0014

e5800000-e580007f : tulip
e6000000-e60000ff : PCI device 1000:0001
e6800000-e68007ff : PCI device 10b5:9050
e7000000-e700007f : PCI device 10b5:9050
ffff0000-ffffffff : reserved

0000-001f : dma1
0020-003f : pic1
0040-005f : timer
0060-006f : keyboard
0070-007f : rtc
0080-008f : dma page reg
00a0-00bf : pic2
00c0-00df : dma2
00f0-00ff : fpu

TPMC501-SW-82 - Linux Device Driver Page 30 of 30

01f0-01f7 : ide0
02f8-02ff : serial(auto)
03c0-03df : vga+
03f6-03f6 : ide0
03f8-03ff : serial(auto)
8000-807f : eth0
8100-811f : TPMC501(PCI)

