
The Embedded I/O Company

TPMC501-SW-95
QNX6 - Neutrino Device Driver

Optically Isolated 32 Channel 16 Bit ADC PMC

User Manual
Issue 1.1 Version 1.0.0

November 2003

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek / Germany
Phone: +49-(0)4101-4058-0 Fax: +49-(0)4101-4058-19
e-mail: info@tews.com www.tews.com

TEWS TECHNOLOGIES LLC
1 E. Liberty Street, Sixth Floor Reno, Nevada 89504 / USA
Phone: +1 (775) 686 6077 Fax: +1 (775) 686 6024
e-mail: usasales@tews.com www.tews.com

TPMC501-SW-95
Optically Isolated 32 Channel 16 Bit ADC PMC

QNX6-Neutrino Device Driver

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2003 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0 First Issue July 25, 2003
1.1 Introduction corrected November 10, 2003

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 2 of 22

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 3 of 22

Table of Content
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Build the device driver ...5
2.2 Build the example application ...5
2.3 Start the driver process..5

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 7
3.1 open() ...7
3.2 close()...8
3.3 devctl() ...9

3.3.1 DCMD_TPMC501_READ ..11
3.3.2 DCMD_TPMC501_ CONFIG ...13
3.3.3 DCMD_TPMC501_SEQ_CONF ..15
3.3.4 DCMD_TPMC501_SEQ_START...17
3.3.5 DCMD_TPMC501_SEQ_STOP...20

4 PROGRAMMING HINTS .. 21
4.1 Using the sequencer mode ..21

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 4 of 22

1 Introduction
The TPMC501-SW-95 QNX6-Neutrino device driver allows the operation of a TPMC501 – Optically
Isolated 32 Channel 16 Bit ADC PMC on QNX6-Neutrino operating systems with Intel or Intel-
compatible x86 CPUs.

The TPMC550 device driver is basically implemented as a user installable Resource Manager. The
standard file (I/O) functions (open, close and devctl) provide the basic interface for opening and
closing a file descriptor and for performing device I/O and control operations.

To start an I/O request the client process has to send an appropriate message, which contains a
function code and optional parameter, to the server process. After the I/O operation has finished the
server process replies the request message with a completion status and optional process data to
caller.

The TPMC501 device driver includes the following functions:

 Configure attached module-type
 reading an analog input value (single channel)
 configuring, starting, stopping and using sequencer mode

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 5 of 22

2 Installation
The software is delivered on a PC formatted 3½" HD diskette, stored in a gzipped tar-archive named
TPMC501-SW-95.tar.gz. This manual is located on the disk too, named TPMC501-SW-95.pdf.

Following files are stored in the tar-archive:

/driver/tpmc501.c Driver source code
/driver/tpmc501.h Definitions and data structures for driver and application
/driver/tpmc501def.h Device driver include
/driver/node.c Queue management source code
/driver/node.h Queue management definitions
/example/example.c Example application

For installation copy the tar-archive into the /usr/src directory and unpack it (e.g.
). After that the necessary directory structure for the automatic build and

the source files are available underneath the new directory called tpmc501.

It is absolutely important to extract the TPMC501 tar archive in the /usr/src directory. Otherwise
the automatic build with make will fail.

2.1

2.2

2.3

Build the device driver
Change to the /usr/src/tpmc501/driver directory

Execute the Makefile:

After successful completion the driver binary (tpmc501) will be installed in the /bin directory.

Build the example application
Change to the /usr/src/tpmc501/example directory

Execute the Makefile:

After successful completion the example binary (tp501exam) will be installed in the /bin directory.

Start the driver process
To start the TPMC501 device driver respective you have to enter the process name with optional
parameter from the command shell or in the startup script.

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 6 of 22

The TPMC501 Resource Manager registers created devices in the Neutrinos pathname space under
following names.

This pathname must be used in the application program to open a path to the desired TPMC501
device.

For debugging you can start the TPMC501 Resource Manager with the –v option. Now the Resource
Manager will print versatile information about TPMC501 configuration and command execution on the
terminal window.

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 7 of 22

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system.

3.1 open()

NAME

open() - open a file descriptor

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *pathname, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the TPMC501 named by pathname.
The flags argument controls how the file is to be opened. TPMC501 devices must be opened
O_RDWR.

EXAMPLE

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

ERRORS

Returns only Neutrino specific error codes, see Neutrino Library Reference.

SEE ALSO

Library Reference - open()

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 8 of 22

3.2 close()

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

Returns only Neutrino specific error code, see Neutrino Library Reference.

SEE ALSO

Library Reference - close()

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 9 of 22

3.3 devctl()

NAME

devctl() – device control functions

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>
#include <devctl.h>

int devctl
(
 int filedes,
 int dcmd,
 void *data_ptr,
 size_t n_bytes,
 int *dev_info_ptr
)

DESCRIPTION

The devctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument dcmd specifies the control code for the operation.

The arguments data_ptr and n_bytes depends on the command and will be described for each
command in detail later in this chapter. Usually data_ptr points to a buffer that passes data between
the user task and the driver and n_bytes defines the size of this buffer.

The argument dev_info_ptr is unused for the TPMC501 driver and should be set to NULL.

The following devctl command codes are defined in tpmc501.h:

Value Description
DCMD_TPMC501_READ Read a new ADC input value
DCMD_TPMC501_CONFIG Configure the module type
DCMD_TPMC501_SEQ_CONF Configure channel for sequencer mode
DCMD_TPMC501_SEQ_START Start sequencer mode
DCMD_TPMC501_SEQ_STOP Stop sequencer mode

See behind for more detailed information on each control code.

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 10 of 22

To use these TPMC501 specific control codes the header file TPMC501.h must be included in
the application.

RETURNS

On success, EOK is returned. In the case of an error, the appropriate error code is returned by the
function (not in errno!).

ERRORS

Returns only Neutrino specific error code, see Neutrino Library Reference.

Other function dependent error codes will be described for each devoctl code separately. Note, the
TPMC501 driver always returns standard QNX error codes.

SEE ALSO

Library Reference - devctl()

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 11 of 22

3.3.1 DCMD_TPMC501_READ

NAME

DCMD_TPMC501_READ – Read a new ADC input value

DESCRIPTION

This function reads a new ADC input value from a specified channel and returns after conversion of
the value to the caller. For this function a TPMC501_IO_READ_STRUCT structure must be initialized
with appropriate data.

typedef struct
{
 int channel; // channel number
 unsigned short gain; // gain stage
 long value; // new output value
 long flags; // output flags
} TPMC510_IO_READ_STRUCT;

channel

This argument specifies the channel number. Valid channel numbers are 1 up to 32 for single-
ended operation mode. For differential mode channel numbers from 1 to 16 are supported.

gain

This argument specifies the used gain level. There are four different gain levels available, the
used gain factor depends on the attached TPMC501-module-type (e.g. for a TPMC501-10
module gain level 0 results in a gain factor 1, level 2 results in a factor 5). Valid gain levels are 0
up to 3.

value

In this argument the new input value will be stored. The input value range depends on the
module type and the used gain level (e.g. the use of a TPMC501-10 module with a gain level of
1 (gain factor 2) results in an input-range of ±5V).

flags

This value is an ORed value of the following flags:
Value Description
TP501_CORR_ENA If this flag is set, the input value will be corrected

with the factory stored correction data.
TP501_DIFF_MODE If this flag is set, the differential conversion mode is

used for data aquisition.

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 12 of 22

EXAMPLE

ERRORS

ECHRNG Specified channel not supported by attached module.
EINVAL Invalid gain value specified.
EBUSY The channel can not be used, because the module is configured in

sequencer mode.
ETIME The module does not complete the conversion cycle within a

normal time.

SEE ALSO

Library Reference - devctl()

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 13 of 22

3.3.2 DCMD_TPMC501_CONFIG

NAME

DCMD_TPMC501_ CONFIG – Configure the module type

DESCRIPTION

This function is used to tell the driver what type of a TPMC501 module is attached. Therefore a
TPMC501_CONFIG_STRUCT structure must be filled with the correct value. The module type must
be known for correct calculation of the converted ADC values.

typedef struct
{
 int type; // module type
} TPMC501_ CONFIG_STRUCT;

type

This value specifies the attached TPMC501-module-type. For valid configuration values see the
header file tpmc501.h.

EXAMPLE

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 14 of 22

ERRORS

EINVAL Invalid argument. This error code is returned if the specified model-
type is invalid.

SEE ALSO

Library Reference - devctl()

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 15 of 22

3.3.3 DCMD_TPMC501_SEQ_CONF

NAME

DCMD_TPMC501_SEQ_CONF – Configures a channel for sequencer mode

DESCRIPTION

This function sets up a channel for use with sequencer mode. For this function the structure
TPMC501_IN_SEQCONF_STRUCT must be initialized with appropriate data.

typedef struct
{
 int channel; // channel to be configured
 unsigned short gain; // gain level
 unsigned short flags; // special flags
} TPMC501_IN_SEQCONF_STRUCT;

channel

This argument specifies the channel to be configured. Valid values are 1 to 16/32 depending on
the operation mode (differential or single-ended).

gain

This argument specifies the gain level to be used. There are four different gain levels available,
the used gain factor depends on the attached TPMC501-module-type (e.g. for a TPMC501-10
module gain level 0 results in a gain factor 1, level 2 results in a factor 5). Valid gain levels are 0
up to 3.

flags

This value is an ORed value of the following flags:
Value Description
TP501_CORR_ENA If this flag is set, the input value will be corrected

with the factory stored correction data.
TP501_DIFF_MODE If this flag is set, the differential conversion mode is

used for data acquisition.
TP501_CHAN_ENA If this flag is set, the specified channels is enabled

for sequencer mode. Otherwise it will not be
converted during sequencer mode.

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 16 of 22

EXAMPLE

ERRORS

ECHRNG Specified channel not supported by attached module.
EINVAL Invalid gain value specified.

SEE ALSO

Library Reference - devctl()

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 17 of 22

3.3.4 DCMD_TPMC501_SEQ_START

NAME

DCMD_TPMC501_SEQ_START – Start sequencer mode

DESCRIPTION

This function starts the sequencer mode and returns immediately to the caller. The sequencer starts to
write its acquired data into a shared memory object defined and opened by the user-application. The
data is transferred between the driver and the calling application via the ringbuffer structure defined by
TPMC501_RINGBUF. To start the sequencer the structure TPMC501_IN_SEQSTART_STRUCT must
be filled with appropriate data.

typedef struct
{
 unsigned short seqTime; // time-factor for sequencer timer
 char shMemName[15]; // name of the shared memory object
} TPMC501_IN_SEQSTART_STRUCT;

seqTime

This argument specifies the timer factor used by the sequencer to convert the values from the
specified channels. The built-in timer uses a 1/10 ms timeslot, so fixed frequencies up to 10kHz
can be specified. If seqTime is 0, the sequencer works in runaround-mode, that means after the
last conversion of the sequence it starts immediately from the beginning. The sampling
frequency depends on the number of channels to be converted.

shMemName[15]

This argument specifies the unique name of the needed shared memory object. It has been
limited to 15 characters.

typedef struct
{
 int channel[32]; // value array for each channel
} TPMC501_SEQ_ENTRY;

typedef struct
{
 TPMC501_SEQ_ENTRY buffer[TP501_RINGBUF_SIZE]; // ringbuffer for acquired data
 unsigned long putPtr, getPtr; // positions for read and write access to the buffer
 char status; // status of the sequencer
} TPMC501_RINGBUF;

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 18 of 22

buffer[]

This argument specifies the data exchange ringbuffer for data transfer. Only the driver process
should write to this memory section. Every buffer entry contains a data storage for one complete
sequence (32 values). To change the ringbuffer size, edit the value of TP501_RINGBUF_SIZE
defined in the header file tpmc501.h.

The driver and the example must be recompiled and restarted after changing
TP501_RINGBUF_SIZE.

putPtr

This argument specifies the position where the driver will fill in the next acquired value. After the
new sequence values were written to the buffer, putPtr will be set to the next location.

getPtr

This argument specifies the position where the application can read a new value. After the read-
operation the application has to increase the getPtr-value to get to the next read-position. It is
necessary to use this value out of the shared memory object because the driver has to know the
current reading position to avoid overwriting data.

status

This argument describes the actual status of the sequencer. Possible values are as follows:
Value Description
TP501_SEQ_OK Sequencer is working fine, no errors.
TP501_SEQ_ERR_TIMER The specified timer value is too small for all

channels to finish conversion.
TP501_SEQ_ERR_SW_DATA_OF The ringbuffer is full, the driver cannot write new

values, data is lost. The reading from the buffer was
too slow.

TP501_SEQ_ERR_HW_DATA_OF The TPMC501-module signals a hardware buffer
overflow. The driver has not fetched the new values
from the sequencer ram.

EXAMPLE

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 19 of 22

ERRORS

ENOBUFS Open of shared memory object failed.
ENOSPC Setting the size for the shared memory object failed.
EACCES Mapping of the shared memory object failed.
ETIME Sequencer refused to start within specific timeout.

SEE ALSO

Library Reference - devctl()

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 20 of 22

3.3.5 DCMD_TPMC501_SEQ_STOP

NAME

DCMD_TPMC501_SEQ_STOP – Stop sequencer mode

DESCRIPTION

This function stops the sequencer mode, no option have to be supplied. It returns immediately to the
caller.

EXAMPLE

ERRORS

ETIME The sequencer refused to stop within specific timeout.

SEE ALSO

Library Reference - devctl()

4 Programming Hints
4.1 Using the sequencer mode

The following flow-charts are describing the high-performance sequencer mode. Because of the
shared-memory usage no task-switching overhead slows down the data acquisition and transfer from
the driver to the application.

Depending on the interrupt situation in the system, the number of channels to be used and the
ringbuffer size sampling rates of up to 50kHz could be reached.

Make sure that the application reads the data fast enough. Do not try to print the acquired data
on the screen via printf in a high frequency application. Use a file stream instead for
debugging.

Note that for every completed sequencer cycle an interrupt is generated by the TPMC501
handled by the driver!

Setup channels for sequencer mode

Start the sequencer

yesContinue sequencer
mode

no

Stop sequencer mode

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 21 of 22

Read sequence from rungbuffer

TPMC501-SW-95 – QNX6 - Neutrino Device Driver Page 22 of 22

Read sequence from
ringbuffer

getPtr+1 yes wait some
time ==

putPtr

no

Copy values from buffer

getPtr++

