
#### NAMC-EXT-RTM-F - Technical Reference Manual



NAMC-EXT-RTM-F
NAMC-EXT-RTM-F-PS
AMC RTM Extender Module
Technical Reference Manual V1.1
HW Revision 1.0





## The NAMC-EXT-RTM-F has been designed by:

N.A.T. GmbH Konrad-Zuse-Platz 9 D-53227 Bonn-Oberkassel

Phone: ++49 / 228 / 965 864 - 0 Fax: ++49 / 228 / 965 864 - 10

Internet: http://www.nateurope.com



## **Disclaimer**

The following documentation, compiled by N.A.T. GmbH (henceforth called N.A.T.), represents the current status of the product's development. The documentation is updated on a regular basis. Any changes which might ensue, including those necessitated by updated specifications, are considered in the latest version of this documentation. N.A.T. is under no obligation to notify any person, organization, or institution of such changes or to make these changes public in any other way.

We must caution you, that this publication could include technical inaccuracies or typographical errors.

N.A.T. offers no warranty, either expressed or implied, for the contents of this documentation or for the product described therein, including but not limited to the warranties of merchantability or the fitness of the product for any specific purpose.

In no event will N.A.T. be liable for any loss of data or for errors in data utilization or processing resulting from the use of this product or the documentation. In particular, N.A.T. will not be responsible for any direct or indirect damages (including lost profits, lost savings, delays or interruptions in the flow of business activities, including but not limited to, special, incidental, consequential, or other similar damages) arising out of the use of or inability to use this product or the associated documentation, even if N.A.T. or any authorized N.A.T. representative has been advised of the possibility of such damages.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations (patent laws, trade mark laws, etc.) and therefore free for general use. In no case does N.A.T. guarantee that the information given in this documentation is free of such third-party rights.

Neither this documentation nor any part thereof may be copied, translated, or reduced to any electronic medium or machine form without the prior written consent from N.A.T. GmbH.

This product (and the associated documentation) is governed by the N.A.T. General Conditions and Terms of Delivery and Payment.

#### Note:

The release of the Hardware Manual is related to a certain HW board revision given in the document title. For HW revisions earlier than the one given in the document title please contact N.A.T. for the corresponding older Hardware Manual release.



# **Table of Contents**

| T   | ABLE OF C       | CONTENTS                                   | 4   |
|-----|-----------------|--------------------------------------------|-----|
| L)  | IST OF TA       | BLES                                       | 5   |
| . 1 | IST OF ET       | GURES                                      | 5   |
|     |                 |                                            |     |
| C   | ONVENTI         | ONS                                        | 6   |
| 1   | INTRO           | DUCTION                                    | 7   |
| 2   | OVERV           | IEW                                        | 9   |
|     | 2.1 BLG         | OCK DIAGRAM                                | 10  |
| 3   |                 | FEATURES                                   |     |
| 3   |                 | S INTERFACE                                |     |
|     |                 | NER SUPPLY                                 |     |
| 4   | HARDV           | VARE                                       | 18  |
|     | 4.1 AM          | C PORT DEFINITION                          | 18  |
|     |                 | NNECTORS, JUMPERS AND WIRE BRIDGES         |     |
|     | 4.2.1           | J1/JP1: AMC Connectors                     |     |
|     | 4.2.2           | Connector J2, J3, J4, J5 and J6            |     |
|     | 4.2.3<br>4.2.4  | Jumper JP2 Jumper JP3                      |     |
|     | 4.2.5           | Jumper JP4 and JP5                         |     |
|     | 4.2.6           | Jumper JP6, JP7 and JP8                    |     |
|     | 4.2.7           | JP9: Atmel Programming Port                |     |
|     | 4.2.8           | J30/P30: RTM Connector                     |     |
|     | 4.2.9<br>4.2.10 | J31/P31: RTM Connector                     |     |
|     | _               | ST POINTS                                  |     |
| 5   |                 | SPECIFICATIONS                             |     |
|     | -               |                                            |     |
| 6   | INSTAI          | LATION                                     | 32  |
|     |                 | FETY NOTE                                  |     |
|     | 6.2 INS 6.2.1   | TALLATION REQUIREMENTS                     |     |
|     | 6.2.2           | Power supply                               |     |
|     |                 | ATEMENT ON ENVIRONMENTAL PROTECTION        | 33  |
|     | 6.3.1           | Compliance to RoHS Directive               |     |
|     | 6.3.2           | Compliance to WEEE Directive               |     |
|     | 6.3.3<br>6.3.4  | Compliance to CE Directive  Product Safety |     |
|     | 6.3.5           | Compliance to REACH                        |     |
| 7   | KNOWI           | N BUGS / RESTRICTIONS                      | 35  |
|     |                 | A. DOCUMENT/C LITCTORY                     | 2.4 |
| A   | PPENDIX         | A: DOCUMENT'S HISTORY                      | 36  |



# **List of Tables**

| Table 1:   | List of used abbreviations                                        | 6  |
|------------|-------------------------------------------------------------------|----|
| Table 2:   | AMC Port Definition for N.A.T. AMC Modules                        |    |
| Table 3:   | J1/JP1: AMC Connectors - Pin Assignment                           |    |
| Table 4:   | Connector J2 – Pin Assignment                                     |    |
| Table 5:   | Connector J3 – Pin Assignment                                     |    |
| Table 6:   | Connector J4 – Pin Assignment                                     |    |
| Table 7:   | Connector J5 – Pin Assignment                                     | 24 |
| Table 8:   | Connector J6 - Pin Assignment                                     | 25 |
| Table 9:   | Jumper JP2 - Pin Assignment                                       | 26 |
| Table 10:  | Jumper JP3 - Pin Assignment                                       | 26 |
| Table 11:  | Jumper JP4 - Pin Assignment                                       |    |
| Table 12:  | Jumper JP5 - Pin Assignment                                       | 26 |
| Table 13:  | Jumper JP6 - Pin Assignment                                       | 27 |
| Table 14:  | Jumper JP7 – Pin Assignment                                       | 27 |
| Table 15:  | Jumper JP8 – Pin Assignment                                       |    |
| Table 16:  | JP9: Atmel Programming Port – Pin Assignment                      | 27 |
| Table 17:  | J30/P30: RTM Connector – Pin Assignment                           |    |
| Table 18:  | J31/P31: RTM Connector – Pin Assignment                           |    |
| Table 19:  | Wire Bridges                                                      |    |
| Table 20:  | NAMC-EXT-RTM-F: Board Specifications                              | 31 |
| List of    | Figures                                                           |    |
| Figure 1:  | NAMC-EXT-RTM-F                                                    | 7  |
| Figure 2:  | Mechanical Installation in a Chassis                              |    |
| Figure 3:  | NAMC-EXT-RTM-F - Block Diagram                                    |    |
| Figure 4:  | NAMC-EXT-RTM-F – Location Diagram (AMC part; top left side)       |    |
| Figure 5:  | NAMC-EXT-RTM-F - Location Diagram (AMC part; bottom left side)    |    |
| Figure 6:  | NAMC-EXT-RTM-F - Location Diagram (RTM part; bottom left side)    |    |
| Figure 7:  | NAMC-EXT-RTM-F - Location Diagram (RTM part; top left side)       |    |
| Figure 8:  | NAMC-EXT-RTM-F (ext. board) - Location D. (RTM part; bottom side) |    |
| Figure 9:  | NAMC-EXT-RTM-F (ext. board) - Location D. (RTM part; top side)    |    |
| Figure 10: | NAMC-EXT-RTM-F (base board) - Connectors                          |    |
| Figure 11: | NAMC-EXT-RTM-F (extension hoard) - Connectors                     |    |



# **Conventions**

If not otherwise specified, addresses and memory maps are written in hexadecimal notation, identified by 0x.

The following table gives a list of the abbreviations used in this document.

**Table 1: List of used abbreviations** 

| Abbreviation | Description                                     |
|--------------|-------------------------------------------------|
| AMC          | Advanced Mezzanine Card                         |
| BUT          | Board Under Test                                |
| CLK          | Clock                                           |
| E1           | PDH signal – data rate 2.048 Mbit/s             |
| GND          | Ground                                          |
| H.110        | Timeslot Interchange Bus                        |
| I/O          | Input/Output                                    |
| IPMB         | Intelligent Platform Management Bus             |
| LED          | Light Emitting Diode                            |
| μC           | Microcontroller                                 |
| μTCA/MTCA    | Micro Telecommunications Computing Architecture |
| P2P          | Peer-To-Peer                                    |
| RTM          | Rear Transition Module                          |
| SMD          | Surface Mounted Device                          |
| SPI          | Serial Peripheral Interface                     |
| TCKL         | Telecom Clock                                   |
| TDM          | Time Division Multiplex                         |



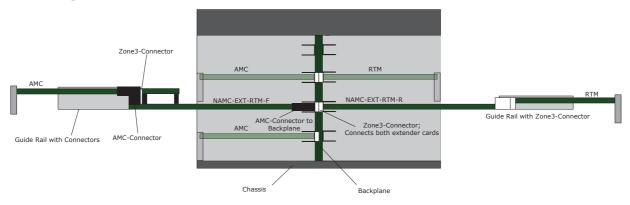
# 1 Introduction

The **NAMC-EXT-RTM-F** is a MTCA.4-based extender card for front AMCs, double width, double height. It eases debugging of  $\mu$ TCA-based AMC boards by enabling the user to access the module under test from both sides, install debug port cables, and it allows access for measurement of power supplies.

<u>Please note:</u> As an assembly option the board can be equipped with an on-board +3.3V power supply for generating +3.3V Management Power from +12V Payload Power, so the module under test can be operated with an external +12V power supply only (NAMC-EXT-RTM-F-PS).

For reasons of simplification this manual refers to the notation **NAMC-EXT-RTM-F** if common functionality is described. If the behaviour differs on the variants, differences are described for each variant separately.

The following figure shows a photo of the **NAMC-EXT-RTM-F**. It is equipped with an AMC- and Zone3-Connector – surrounded by a guide rail – for insertion of the front AMC. Additionally it features two connectors on the rear side; the standard AMC-Connector to connect to the backplane and a Zone3-Connector to connect to a RTM or an **NAMC-EXT-RTM-R** (Extender module for RTM).


Figure 1: NAMC-EXT-RTM-F



Mechanical installation of the **NAMC-EXT-RTM-F** and the **NAMC-EXT-RTM-R** in a chassis is shown in the figure below. Both extender cards connect via the Zone3-Connector.



Figure 2: Mechanical Installation in a Chassis





# 2 Overview

The **NAMC-EXT-RTM-F** consists of a base board and an extension module. The extension module is mandatory to compensate the difference in height between the **NAMC-EXT-RTM-F** base board and the Zone3-Connector to an optional RTM. **Please note:** If the extension module is **not** installed, the **NAMC-EXT-RTM-F** can be used with a front AMC **only** as it is **not possible** to connect to an RTM.

The **NAMC-EXT-RTM-F** is a passive extender board, it does not contain any circuitry. The **NAMC-EXT-RTM-F-PS** features an on-board +3.3V power supply for generating Management Power from Payload Power, so the module under test can be operated with an external +12V power supply only.



# 2.1 Block Diagram

The following figure shows a block diagram of the **NAMC-EXT-RTM-F-PS** with the optional power supply.

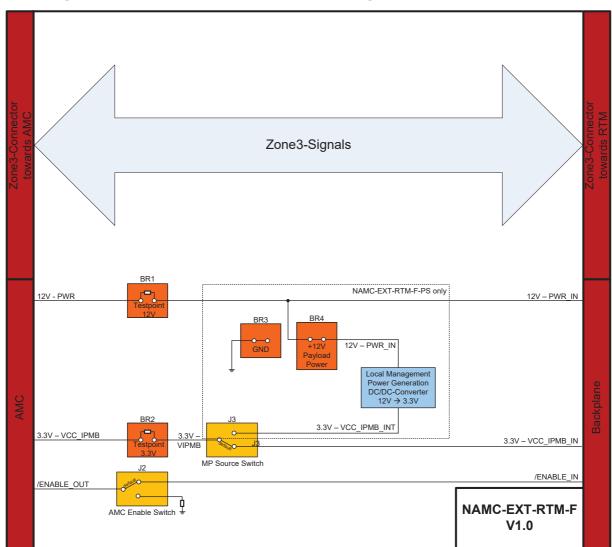



Figure 3: NAMC-EXT-RTM-F – Block Diagram



# 2.2 Location Diagrams

The following figures highlight the position of the important components. Depending on the board type it might be that the board does not include all components named in the location diagrams. This applies in particular to the optional +3.3V power supply of the **NAMC-EXT-RTM-F-PS**.

Figure 4: NAMC-EXT-RTM-F – Location Diagram (AMC part; top left side)

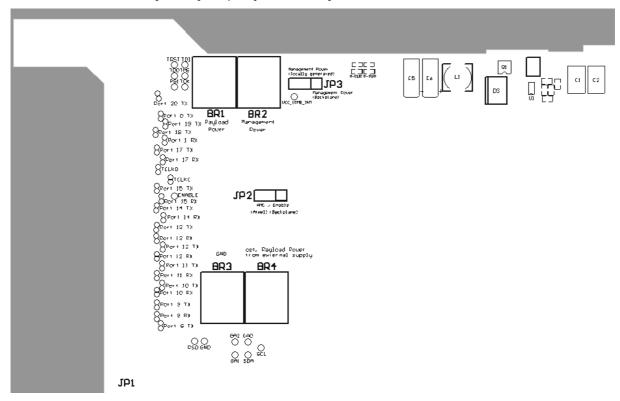





Figure 5: NAMC-EXT-RTM-F – Location Diagram (AMC part; bottom left side)





Figure 6: NAMC-EXT-RTM-F - Location Diagram (RTM part; bottom left side)

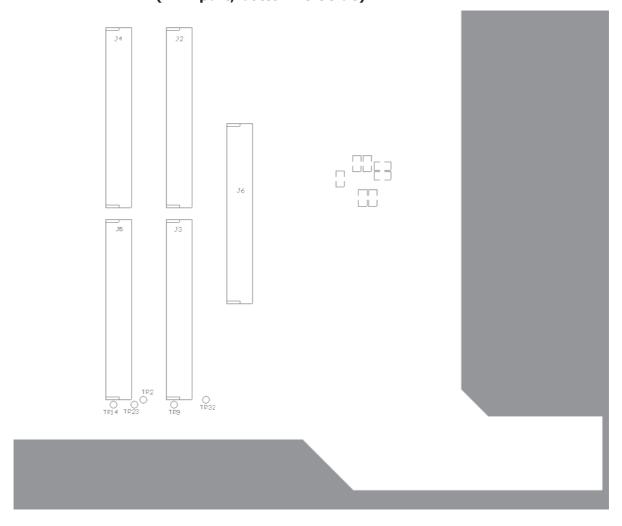





Figure 7: NAMC-EXT-RTM-F – Location Diagram (RTM part; top left side)

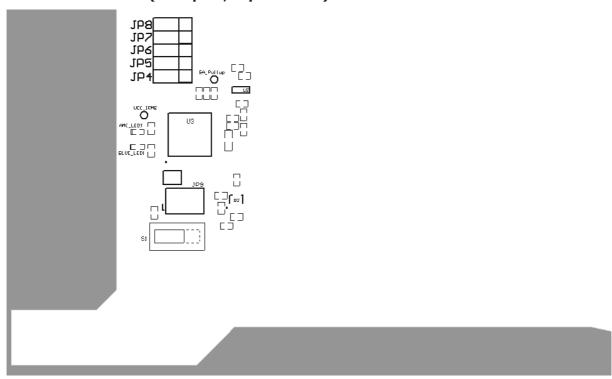





Figure 8: NAMC-EXT-RTM-F (ext. board) – Location D. (RTM part; bottom side)

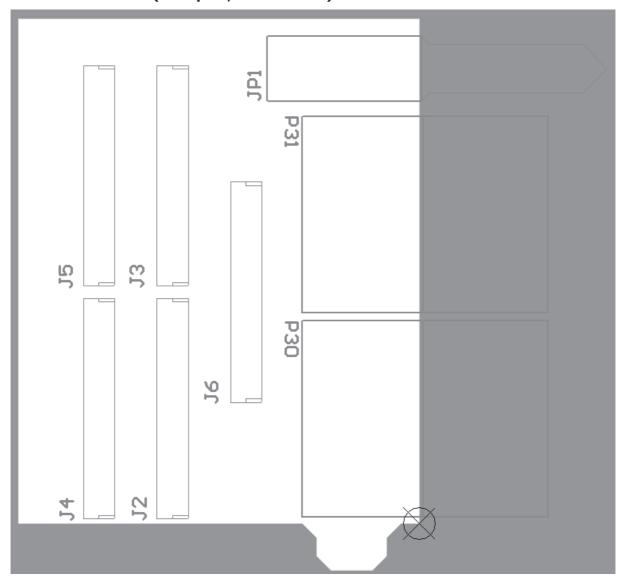
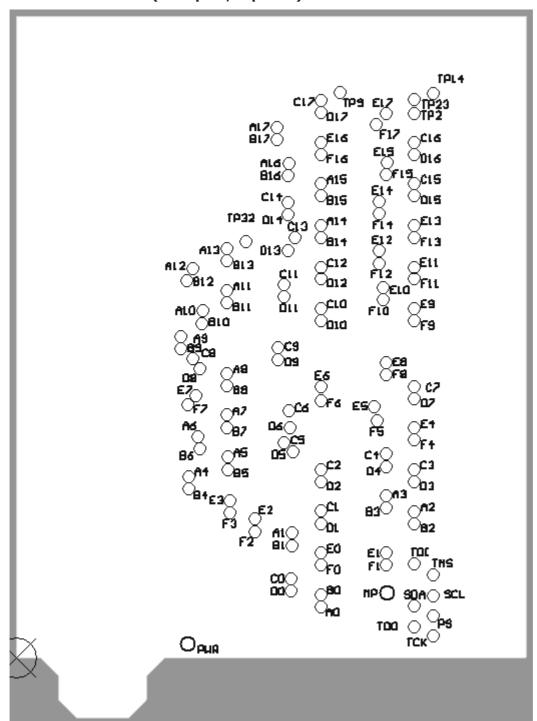






Figure 9: NAMC-EXT-RTM-F (ext. board) – Location D. (RTM part; top side)





# 3 Board Features

## 3.1 Bus Interface

- All AMC ports connected
- All RTM ports connected

# 3.2 Power Supply

- The **NAMC-EXT-RTM-F** draws very little power from the carrier supplies. Current drawn from +3.3V and +12V is less than 10mA each.
- Power planes for GND, payload power and management power.
- Both power supplies drive signalling LEDs.
- Both power supplies may be cut by opening wire bridges for current measurements.
- On the **NAMC-EXT-RTM-F-PS** +3.3V Management power may either be taken from the backplane or generated locally from Payload Power (assembly option).
- Payload Power may either be taken from the backplane or a +12V power supply may be connected to wire bridge BR4.



# 4 Hardware

# **4.1 AMC Port Definition**

**Table 2:** AMC Port Definition for N.A.T. AMC Modules

|           | Port # | AMC<br>Port Mapping<br>Strategy | Port used as                                |
|-----------|--------|---------------------------------|---------------------------------------------|
|           | CLK1   |                                 | Universal Clock Signal, depends on used AMC |
|           | CLK2   | Clocks                          | Universal Clock Signal, depends on used AMC |
|           | CLK3   |                                 | Universal Clock Signal, depends on used AMC |
|           | 0      | Common                          | Not specified, depends on used AMC          |
| <u>_</u>  | 1      | Options                         | Not specified, depends on used AMC          |
| Connector | 2      | Region                          | Not specified, depends on used AMC          |
| ne        | 3      |                                 | Not specified, depends on used AMC          |
| on        | 4      |                                 | Not specified, depends on used AMC          |
| Ö         | 5      |                                 | Not specified, depends on used AMC          |
| Basic     | 6      | Fat                             | Not specified, depends on used AMC          |
| Ва        | 7      | Pipes                           | Not specified, depends on used AMC          |
|           | 8      | Region                          | Not specified, depends on used AMC          |
|           | 9      |                                 | Not specified, depends on used AMC          |
|           | 10     |                                 | Not specified, depends on used AMC          |
|           | 11     |                                 | Not specified, depends on used AMC          |
|           | 12     |                                 | Not specified, depends on used AMC          |
| Connector | 13     |                                 | Not specified, depends on used AMC          |
| ecl       | 14     |                                 | Not specified, depends on used AMC          |
| nn        | 15     | Extended                        | Not specified, depends on used AMC          |
| ပိ        | 16     | Options                         | TCLKC / TCLKD                               |
| þ         | 17     | Region                          | Not specified, depends on used AMC          |
| Extended  | 18     |                                 | Not specified, depends on used AMC          |
| ter       | 19     |                                 | Not specified, depends on used AMC          |
| Ë         | 20     |                                 | Not specified, depends on used AMC          |



# 4.2 Connectors, Jumpers and Wire Bridges

There are several connectors and wire bridges on the **NAMC-EXT-RTM-F** board. Connector J1 is a direct connector and fits into the  $\mu$ TCA AMC slot. Connector JP1, P30 and P31 are the socket into which the device under test is plugged. J30 and J31 enable the connection to an RTM. The following figure shows the connectors, as well as the wire bridges:



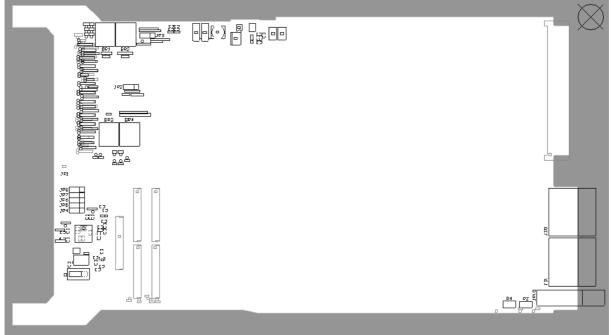
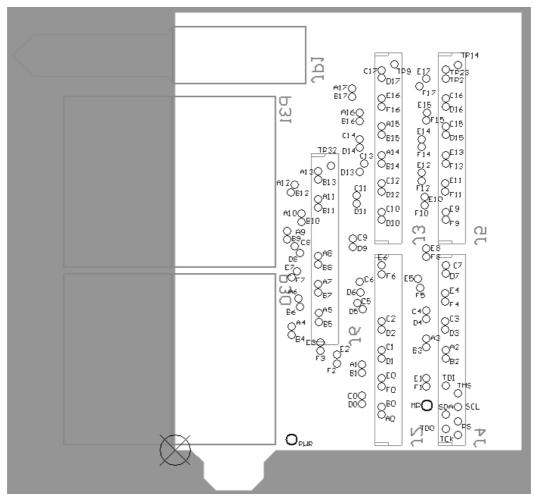
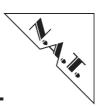







Figure 11: NAMC-EXT-RTM-F (extension board) – Connectors





## 4.2.1 J1/JP1: AMC Connectors

Table 3: J1/JP1: AMC Connectors – Pin Assignment

| Pin # | AMC-Signal | AMC-Signal | Pin # |
|-------|------------|------------|-------|
| 1     | GND        | GND        | 170   |
| 2     | PWR        | TDI        | 169   |
| 3     | /PS1       | TDO        | 168   |
| 4     | PWR_IPMB   | /TRST      | 167   |
| 5     | GA0        | TMS        | 166   |
| 6     | RESVD      | TCK        | 165   |
| 7     | GND        | GND        | 164   |
| 8     | RESVD      | Tx20+      | 163   |
| 9     | PWR        | Tx20-      | 162   |
| 10    | GND        | GND        | 161   |
| 11    | Tx0+       | Rx20+      | 160   |
| 12    | Tx0-       | Rx20-      | 159   |
| 13    | GND        | GND        | 158   |
| 14    | Rx0+       | Tx19+      | 157   |
| 15    | Rx0-       | Tx19-      | 156   |
| 16    | GND        | GND        | 155   |
| 17    | GA1        | Rx19+      | 154   |
| 18    | PWR        | Rx19-      | 153   |
| 19    | GND        | GND        | 152   |
| 20    | Tx1+       | Tx18+      | 151   |
| 21    | Tx1-       | Tx18-      | 150   |
| 22    | GND        | GND        | 149   |
| 23    | RLINK2 P   | Rx18+      | 148   |
| 24    | RLINK2_N   | Rx18-      | 147   |
| 25    | GND        | GND        | 146   |
| 26    | GA2        | Tx17+      | 145   |
| 27    | PWR        | Tx17-      | 144   |
| 28    | GND        | GND        | 143   |
| 29    | Tx2+       | Rx17+      | 142   |
| 30    | Tx2-       | Rx17-      | 141   |
| 31    | GND        | GND        | 140   |
| 32    | Rx2+       | Tx16+      | 139   |
| 33    | Rx2-       | Tx16-      | 138   |
| 34    | GND        | GND        | 137   |
| 35    | Tx3+       | Rx16+      | 136   |
| 36    | Tx3-       | Rx16-      | 135   |
| 37    | GND        | GND        | 134   |
| 38    | Rx3+       | Tx15+      | 133   |
| 39    | Rx3-       | Tx15-      | 132   |
| 40    | GND        | GND        | 131   |
| 41    | /ENABLE    | Rx15+      | 130   |
| 42    | PWR        | Rx15-      | 129   |
| 43    | GND        | GND        | 128   |
| 44    | Tx4+       | Tx14+      | 127   |
| 45    | Tx4-       | Tx14-      | 126   |
| 46    | GND        | GND        | 125   |

## **NAMC-EXT-RTM-F – Technical Reference Manual**



| Pin # | AMC-Signal | AMC-Signal | Pin # |
|-------|------------|------------|-------|
| 47    | Rx4+       | Rx14+      | 124   |
| 48    | Rx4-       | Rx14-      | 123   |
| 49    | GND        | GND        | 122   |
| 50    | Tx5+       | Tx13+      | 121   |
| 51    | Tx5-       | Tx13-      | 120   |
| 52    | GND        | GND        | 119   |
| 53    | Rx5+       | Rx13+      | 118   |
| 54    | Rx5-       | Rx13-      | 117   |
| 55    | GND        | GND        | 116   |
| 56    | IPMB_SCL   | Tx12+      | 115   |
| 57    | PWR        | Tx12-      | 114   |
| 58    | GND        | GND        | 113   |
| 59    | Tx6+       | Rx12+      | 112   |
| 60    | Tx6-       | Rx12-      | 111   |
| 61    | GND        | GND        | 110   |
| 62    | Rx6+       | Tx11+      | 109   |
| 63    | Rx6-       | Tx11-      | 108   |
| 64    | GND        | GND        | 107   |
| 65    | Tx7+       | Rx11+      | 106   |
| 66    | Tx7-       | Rx11-      | 105   |
| 67    | GND        | GND        | 104   |
| 68    | Rx7+       | Tx10+      | 103   |
| 69    | Rx7-       | Tx10-      | 102   |
| 70    | GND        | GND        | 101   |
| 71    | IPMB_SDA   | Rx10+      | 100   |
| 72    | PWR        | Rx10-      | 99    |
| 73    | GND        | GND        | 98    |
| 74    | TCLKA+     | Tx9+       | 97    |
| 75    | TCLKA-     | Tx9-       | 96    |
| 76    | GND        | GND        | 95    |
| 77    | TCLKB+     | Rx9+       | 94    |
| 78    | TCLKB-     | Rx9-       | 93    |
| 79    | GND        | GND        | 92    |
| 80    | FCLKA+     | Tx8+       | 91    |
| 81    | FCLKA-     | Tx8-       | 90    |
| 82    | GND        | GND        | 89    |
| 83    | /PS0       | Rx8+       | 88    |
| 84    | PWR        | Rx8-       | 87    |
| 85    | GND        | GND        | 86    |



## 4.2.2 Connector J2, J3, J4, J5 and J6

Connector J2, J3, J4, J5 and J6 connect the **NAMC-EXT-RTM-F** base board and the **NAMC-EXT-RTM-F** extension board.

**Table 4:** Connector J2 – Pin Assignment

| Pin # | RTM-Signal | RTM-Signal | Pin # |
|-------|------------|------------|-------|
| 1     | RTM_PWR    | RTM_PWR    | 26    |
| 2     | RTM_PWR    | RTM_PWR    | 27    |
| 3     | GND        | GND        | 28    |
| 4     | GND        | A0         | 29    |
| 5     | GND        | В0         | 30    |
| 6     | D0         | GND        | 31    |
| 7     | C0         | GND        | 32    |
| 8     | GND        | F0         | 33    |
| 9     | GND        | E0         | 34    |
| 10    | B1         | GND        | 35    |
| 11    | A1         | GND        | 36    |
| 12    | GND        | D1         | 37    |
| 13    | GND        | C1         | 38    |
| 14    | F2         | GND        | 39    |
| 15    | E2         | GND        | 40    |
| 16    | GND        | D2         | 41    |
| 17    | GND        | C2         | 42    |
| 18    | F3         | GND        | 43    |
| 19    | E3         | GND        | 44    |
| 20    | GND        | D5         | 45    |
| 21    | GND        | C5         | 46    |
| 22    | D6         | GND        | 47    |
| 23    | C6         | GND        | 48    |
| 24    | GND        | F6         | 49    |
| 25    | GND        | E6         | 50    |

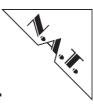
**Table 5:** Connector J3 – Pin Assignment

| Pin # | RTM-Signal | RTM-Signal | Pin # |
|-------|------------|------------|-------|
| 1     | D9         | GND        | 26    |
| 2     | C9         | GND        | 27    |
| 3     | GND        | D10        | 28    |
| 4     | GND        | C10        | 29    |
| 5     | D11        | GND        | 30    |
| 6     | C11        | GND        | 31    |
| 7     | GND        | D12        | 32    |
| 8     | GND        | C12        | 33    |
| 9     | D13        | GND        | 34    |
| 10    | C13        | GND        | 35    |
| 11    | GND        | B14        | 36    |
| 12    | GND        | A14        | 37    |
| 13    | D14        | GND        | 38    |
| 14    | C14        | GND        | 39    |
| 15    | GND        | B15        | 40    |
| 16    | GND        | A15        | 41    |

### **NAMC-EXT-RTM-F - Technical Reference Manual**



| Pin # | RTM-Signal | RTM-Signal | Pin # |
|-------|------------|------------|-------|
| 17    | B16        | GND        | 42    |
| 18    | A16        | GND        | 43    |
| 19    | GND        | F16        | 44    |
| 20    | GND        | E16        | 45    |
| 21    | B17        | GND        | 46    |
| 22    | A17        | GND        | 47    |
| 23    | GND        | D17        | 48    |
| 24    | GND        | C17        | 49    |
| 25    | TP9        | GND        | 50    |


Table 6: Connector J4 – Pin Assignment

| Pin # | RTM-Signal | RTM-Signal | Pin # |
|-------|------------|------------|-------|
| 1     | RTM_TCK    | GND        | 26    |
| 2     | GND        | RTM_TDO    | 27    |
| 3     | RTM_PS     | GND        | 28    |
| 4     | GND        | RTM_SDA    | 29    |
| 5     | RTM_SCL    | GND        | 30    |
| 6     | GND        | RTM_MP     | 31    |
| 7     | RTM_TMS    | GND        | 32    |
| 8     | GND        | RTM_TDI    | 33    |
| 9     | GND        | GND        | 34    |
| 10    | F1         | GND        | 35    |
| 11    | E1         | GND        | 36    |
| 12    | GND        | B2         | 37    |
| 13    | GND        | A2         | 38    |
| 14    | В3         | GND        | 39    |
| 15    | A3         | GND        | 40    |
| 16    | GND        | D3         | 41    |
| 17    | GND        | C3         | 42    |
| 18    | D4         | GND        | 43    |
| 19    | C4         | GND        | 44    |
| 20    | GND        | F4         | 45    |
| 21    | GND        | E4         | 46    |
| 22    | F5         | GND        | 47    |
| 23    | E5         | GND        | 48    |
| 24    | GND        | D7         | 49    |
| 25    | GND        | C7         | 50    |

**Table 7:** Connector J5 – Pin Assignment

| Pin # | RTM-Signal | RTM-Signal | Pin # |
|-------|------------|------------|-------|
| 1     | F8         | GND        | 26    |
| 2     | E8         | GND        | 27    |
| 3     | GND        | F9         | 28    |
| 4     | GND        | E9         | 29    |
| 5     | F10        | GND        | 30    |
| 6     | E10        | GND        | 31    |
| 7     | GND        | F11        | 32    |
| 8     | GND        | E11        | 33    |
| 9     | F12        | GND        | 34    |
| 10    | E12        | GND        | 35    |

# **NAMC-EXT-RTM-F – Technical Reference Manual**



| Pin # | RTM-Signal | RTM-Signal | Pin # |
|-------|------------|------------|-------|
| 11    | GND        | F13        | 36    |
| 12    | GND        | E13        | 37    |
| 13    | F14        | GND        | 38    |
| 14    | E14        | GND        | 39    |
| 15    | GND        | D15        | 40    |
| 16    | GND        | C15        | 41    |
| 17    | F15        | GND        | 42    |
| 18    | E15        | GND        | 43    |
| 19    | GND        | D16        | 44    |
| 20    | GND        | C16        | 45    |
| 21    | F17        | GND        | 46    |
| 22    | E17        | GND        | 47    |
| 23    | GND        | TP2        | 48    |
| 24    | GND        | TP23       | 49    |
| 25    | TP14       | GND        | 50    |

Table 8: Connector J6 - Pin Assignment

| Pin # | RTM-Signal | RTM-Signal | Pin # |
|-------|------------|------------|-------|
| 1     | B4         | GND        | 26    |
| 2     | A4         | GND        | 26    |
| 3     | GND        | B5         | 28    |
| 4     | GND        | A5         | 29    |
| 5     | В6         | GND        | 30    |
| 6     | A6         | GND        | 31    |
| 7     | GND        | В7         | 32    |
| 8     | GND        | A7         | 33    |
| 9     | F7         | GND        | 34    |
| 10    | E7         | GND        | 35    |
| 11    | GND        | В8         | 36    |
| 12    | GND        | A8         | 37    |
| 13    | D8         | GND        | 38    |
| 14    | C8         | GND        | 39    |
| 15    | GND        | В9         | 40    |
| 16    | GND        | A9         | 41    |
| 17    | B10        | GND        | 42    |
| 18    | A10        | GND        | 43    |
| 19    | GND        | B11        | 44    |
| 20    | GND        | A11        | 45    |
| 21    | B12        | GND        | 46    |
| 22    | A12        | GND        | 47    |
| 23    | GND        | B13        | 48    |
| 24    | GND        | A13        | 49    |
| 25    | TP32       | GND        | 50    |



#### 4.2.3 Jumper JP2

The setting of jumper JP2 defines the source for /AMC\_ENABLE signal. The default position (right aligned) means the signal is connected to the backplane (Pin No. 1 connected to Pin No. 2). In the left aligned position the signal is pulled down locally on the extender board (Pin No. 2 connected to Pin No. 3). This position also enables the local Management Controller (ATmega16L-8AC).

Table 9: Jumper JP2 - Pin Assignment

| Pin # | Signal      |
|-------|-------------|
| 1     | /Enable_IN  |
| 2     | /Enable_OUT |
| 3     | /Enable_AT  |

#### **4.2.4 Jumper JP3**

The setting of jumper JP3 defines the source of Management Power. By default, Management Power is taken from the backplane (right aligned position). In case there is no Management Power available (e.g. a test assembly with just a +12V supply), Management Power can be generated on-board from the +12V Payload Power. In order to make use of this feature, set jumper JP3 to the left aligned position.

Table 10: Jumper JP3 - Pin Assignment

| Pin # | Signal       |
|-------|--------------|
| 1     | VCC_IPMB_IN  |
| 2     | VCC_IPMB     |
| 3     | VCC_IPMB_INT |

**Please note:** The function of Jumper JP3 is only valid on the **NAMC-EXT-RTM-F--PS**.

#### 4.2.5 Jumper JP4 and JP5

The settings of jumper JP4 and JP5 define the utilization of a local (on the **NAMC-EXT-RTM-F**) and non-local (on AMC board) Management Controller. By default, the nonlocal Management Controller is used (Pin 1 to Pin 3 are connected).

**Table 11:** Jumper JP4 – Pin Assignment

| Pin # | Signal  |
|-------|---------|
| 1     | SDA_IN  |
| 2     | SDA_AT  |
| 3     | SDA_OUT |

**Table 12: Jumper JP5 – Pin Assignment** 

| Pin # | Signal  |
|-------|---------|
| 1     | SCL_IN  |
| 2     | SCL_AT  |
| 3     | SCL OUT |



## 4.2.6 Jumper JP6, JP7 and JP8

The settings of jumper JP6, JP7 and JP8 define the geographical address of the module on IPMB. By default, it defines the address of the non-local Management Controller (Pin 1 to Pin 3 are connected).

**Table 13: Jumper JP6 – Pin Assignment** 

| Pin # | Signal  |
|-------|---------|
| 1     | GA0_IN  |
| 2     | GA0_AT  |
| 3     | GA0_OUT |

**Table 14: Jumper JP7 – Pin Assignment** 

| Pin # | Signal  |
|-------|---------|
| 1     | GA1_IN  |
| 2     | GA1_AT  |
| 3     | GA1_OUT |

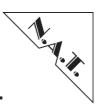
Table 15: Jumper JP8 - Pin Assignment

| Pin # | Signal  |
|-------|---------|
| 1     | GA2_IN  |
| 2     | GA2_AT  |
| 3     | GA2_OUT |

#### 4.2.7 JP9: Atmel Programming Port

Connector JP9 connects to the programming-port of the Atmel  $\mu C$  device.

Table 16: JP9: Atmel Programming Port - Pin Assignment


| Pin # | Signal    |
|-------|-----------|
| 1     | MISO      |
| 2     | VCC_IPMB  |
| 3     | SCK       |
| 4     | MOSI      |
| 5     | /RST_IMPI |
| 6     | GND       |



# 4.2.8 J30/P30: RTM Connector

Table 17: J30/P30: RTM Connector – Pin Assignment

| Pin # | RTM-Signal | RTM-Signal | Pin # |
|-------|------------|------------|-------|
| 1     | RTM_PWR    | C3         | 46    |
| 2     | RTM_PWR    | D3         | 47    |
| 3     | GND        | GND        | 48    |
| 4     | RTM_PWR    | C4         | 49    |
| 5     | RTM_PWR    | D4         | 50    |
| 6     | GND        | GND        | 51    |
| 7     | A0         | C5         | 52    |
| 8     | В0         | D5         | 53    |
| 9     | GND        | GND        | 54    |
| 10    | A1         | C6         | 55    |
| 11    | B1         | D6         | 56    |
| 12    | GND        | GND        | 57    |
| 13    | A2         | C7         | 58    |
| 14    | B2         | D7         | 59    |
| 15    | GND        | GND        | 60    |
| 16    | A3         | RTM_TCK    | 61    |
| 17    | В3         | RTM_TDO    | 62    |
| 18    | GND        | GND        | 63    |
| 19    | A4         | RTM TDI    | 64    |
| 20    | B4         | RTM_TMS    | 65    |
| 21    | GND        | GND        | 66    |
| 22    | A5         | E0         | 67    |
| 23    | B5         | F0         | 68    |
| 24    | GND        | GND        | 69    |
| 25    | A6         | E1         | 70    |
| 26    | B6         | F1         | 71    |
| 27    | GND        | GND        | 72    |
| 28    | A7         | E2         | 73    |
| 29    | В7         | F2         | 74    |
| 30    | GND        | GND        | 75    |
| 31    | RTM_PS     | E3         | 76    |
| 32    | RTM_SDA    | F3         | 77    |
| 33    | GND        | GND        | 78    |
| 34    | RTM_MP     | E4         | 79    |
| 35    | RTM_SCL    | F4         | 80    |
| 36    | GND        | GND        | 81    |
| 37    | C0         | E5         | 82    |
| 38    | D0         | F5         | 83    |
| 39    | GND        | GND        | 84    |
| 40    | C1         | E6         | 85    |
| 41    | D1         | F6         | 86    |
| 42    | GND        | GND        | 87    |
| 43    | C2         | E7         | 88    |
| 44    | D2         | F7         | 89    |
| 45    | GND        | GND        | 90    |



# 4.2.9 J31/P31: RTM Connector

Table 18: J31/P31: RTM Connector – Pin Assignment

| Pin # | RTM-Signal | RTM-Signal | Pin # |
|-------|------------|------------|-------|
| 1     | A8         | C13        | 46    |
| 2     | B8         | D13        | 47    |
| 3     | GND        | GND        | 48    |
| 4     | A9         | C14        | 49    |
| 5     | В9         | D14        | 50    |
| 6     | GND        | GND        | 51    |
| 7     | A10        | C15        | 52    |
| 8     | B10        | D15        | 53    |
| 9     | GND        | GND        | 54    |
| 10    | A11        | C16        | 55    |
| 11    | B11        | D16        | 56    |
| 12    | GND        | GND        | 57    |
| 13    | A12        | C17        | 58    |
| 14    | B12        | D17        | 59    |
| 15    | GND        | GND        | 60    |
| 16    | A13        | E8         | 61    |
| 17    | B13        | F8         | 62    |
| 18    | GND        | GND        | 63    |
| 19    | A14        | E9         | 64    |
| 20    | B14        | F9         | 65    |
| 21    | GND        | GND        | 66    |
| 22    | A15        | E10        | 67    |
| 23    | B15        | F10        | 68    |
| 24    | GND        | GND        | 69    |
| 25    | A16        | E11        | 70    |
| 26    | B16        | F11        | 71    |
| 27    | GND        | GND        | 72    |
| 28    | A17        | E12        | 73    |
| 29    | B17        | F12        | 74    |
| 30    | GND        | GND        | 75    |
| 31    | C8         | E13        | 76    |
| 32    | D8         | F13        | 77    |
| 33    | GND        | GND        | 78    |
| 34    | C9         | E14        | 79    |
| 35    | D9         | F14        | 80    |
| 36    | GND        | GND        | 81    |
| 37    | C10        | E15        | 82    |
| 38    | D10        | F15        | 83    |
| 39    | GND        | GND        | 84    |
| 40    | C11        | E16        | 85    |
| 41    | D11        | F16        | 86    |
| 42    | GND        | GND        | 87    |
| 43    | C12        | E17        | 88    |
| 44    | D12        | F17        | 89    |
| 45    | GND        | GND        | 90    |



#### 4.2.10 Wire Bridges

The wire bridges BR1 and BR2 connect the supply voltages. The supply current can be measured between both contacts of one bridge if the respective wire bridge is opened.

**Please note:** Instead of using a simple ampere meter it is recommended to insert a shunt resistor (e.g.  $10 \text{ m}\Omega$ ) between the contacts and measure the voltage drop to calculate the current or to monitor it on an oscilloscope.

Both contacts of BR3 are connected to ground; it can be used as a reference contact for measuring and/or to connect an external power supply (**NAMC-EXT-RTM-PS** only).

Both contacts of BR4 are connected to +12V Payload Power; it can be used to connect an external power supply to the extender board (**NAMC-EXT-RTM-PS** only).

The following table gives an overview of the wire bridges and the supplies they connect.

Table 19: Wire Bridges

| Supply                               | Wire Bridge |
|--------------------------------------|-------------|
| +12V                                 |             |
| Payload Power                        | BR1         |
| +3.3V                                |             |
| Management Power                     | BR2         |
| GND                                  |             |
| (reference point or external supply) | BR3         |
| +12V                                 |             |
| Payload Power                        | BR4         |
| (external supply)                    |             |

# 4.3 Test points

There are a number of test points available on the **NAMC-EXT-RTM-F**. Due to layout reasons there are only small SMD test points for the differential signals. All other signals (e.g. geographical address, IPMB signals, etc.) are routed to standard test points, into which standard 100 mil header connectors may be assembled. By default, there are no headers assembled. The names of the signals carried by the test points are printed on the silkscreen.



# **5 Board Specifications**

**Table 20:** NAMC-EXT-RTM-F: Board Specifications

| AMC-Module            | Extender for Standard Advanced Mezzanine Cards,<br>double width, double height |  |  |
|-----------------------|--------------------------------------------------------------------------------|--|--|
| Power Consumption     | +3.3V / 0.01A typical                                                          |  |  |
| (NAMC-EXT-RTM-F only) | +12V / 0.01A typical                                                           |  |  |
| Operating Temperature | -40°C - +85°C                                                                  |  |  |
| Storage Temperature   | -40°C - +85°C                                                                  |  |  |
| Humidity              | 5% – 90% rh non-condensing                                                     |  |  |



# 6 Installation

# 6.1 Safety Note

To ensure proper functioning of the **NAMC-EXT-RTM-F** during its usual lifetime take the following precautions before handling the board.

#### **CAUTION**

Electrostatic discharge and incorrect board installation and uninstallation can damage circuits or shorten their lifetime.

- Before installing or uninstalling the **NAMC-EXT-RTM-F** read this installation section
- Before installing or uninstalling the **NAMC-EXT-RTM-F** in a rack:
  - Check all installed boards and modules for steps that you have to take before turning on or off the power.
  - Take those steps.
  - Finally turn on or off the power.
- Before touching integrated circuits ensure to take all require precautions for handling electrostatic devices.

# **6.2 Installation Requirements**

#### **IMPORTANT**

Before powering up check this section for installation prerequisites and requirements!

#### 6.2.1 Requirements

The installation requires only

- an AMC backplane for connecting the NAMC-EXT-RTM-F.
- a power supply

#### 6.2.2 Power supply

The power supply for the **NAMC-EXT-RTM-F** must meet the following specifications:

- required for the extender board:
  - +3.3V / 0.01A typical
  - +12V / 0.01A typical
- required for the board under test:
  - refer to the BUT power specification



### 6.3 Statement on Environmental Protection

#### 6.3.1 Compliance to RoHS Directive

Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the "Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment" (RoHS) predicts that all electrical and electronic equipment being put on the European market after June 30th, 2006 must contain lead, mercury, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE) and cadmium in maximum concentration values of 0.1% respective 0.01% by weight in homogenous materials only.

As these hazardous substances are currently used with semiconductors, plastics (i.e. semiconductor packages, connectors) and soldering tin any hardware product is affected by the RoHS directive if it does not belong to one of the groups of products exempted from the RoHS directive.

Although many of hardware products of N.A.T. are exempted from the RoHS directive it is a declared policy of N.A.T. to provide all products fully compliant to the RoHS directive as soon as possible. For this purpose since January 31st, 2005 N.A.T. is requesting RoHS compliant deliveries from its suppliers. Special attention and care has been payed to the production cycle, so that wherever and whenever possible RoHS components are used with N.A.T. hardware products already.

#### 6.3.2 Compliance to WEEE Directive

Directive 2002/95/EC of the European Commission on "Waste Electrical and Electronic Equipment" (WEEE) predicts that every manufacturer of electrical and electronical equipment which is put on the European market has to contribute to the reuse, recycling and other forms of recovery of such waste so as to reduce disposal. Moreover this directive refers to the Directive 2002/95/EC of the European Comission on the "Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment" (RoHS).

Having its main focus on private persons and households using such electrical and electronic equipment the directive also affects business-to-business relationships. The directive is quite restrictive on how such waste of private persons and households has to be handled by the supplier/manufacturer, however, it allows a greater flexibility in business-to-business relationships. This pays tribute to the fact with industrial use electrical and electronical products are commonly integrated into larger and more complex environments or systems that cannot easily be split up again when it comes to their disposal at the end of their life cycles.

As N.A.T. products are solely sold to industrial customers, by special arrangement at time of purchase the customer agreed to take the responsibility for a WEEE compliant disposal of the used N.A.T. product. Moreover, all N.A.T. products are marked according to the directive with a crossed out bin to indicate that these products within the European Community must not be disposed with regular waste.

#### NAMC-EXT-RTM-F - Technical Reference Manual



If you have any questions on the policy of N.A.T. regarding the Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the "Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment" (RoHS) or the Directive 2002/95/EC of the European Commission on "Waste Electrical and Electronic Equipment" (WEEE) please contact N.A.T. by phone or e-mail.

#### 6.3.3 Compliance to CE Directive

Compliance to the CE Directive is declared. A 'CE' sign can be found on the PCB.

#### 6.3.4 Product Safety

The board complies to EN60950 and UL1950.

#### 6.3.5 Compliance to REACH

The REACH EU regulation (Regulation (EC) No 1907/2006) is known to N.A.T. GmbH. N.A.T. did not receive information from their European suppliers of substances of very high concern of the ECHA candidate list. Article 7(2) of REACH is notable as no substances are intentionally being released by NAT products and as no hazardous substances are contained. Information remains in effect or will be otherwise stated immediately to our customers.



# 7 Known Bugs / Restrictions

none



# **Appendix A: Document's History**

| Revision | Date       | Description                                                                                                                       | Author |
|----------|------------|-----------------------------------------------------------------------------------------------------------------------------------|--------|
| 1.0      | 01.07.2010 | initial revision                                                                                                                  | rm     |
| 1.1      | 17.05.2013 | Adresse, phone and fax updated, words updated,                                                                                    | fh     |
|          | 19.08.2014 | Adaption to new layout incl. renaming of headings<br>Minor changes, typo correction<br>Updated chapter 6.3 RoHS-Directive / REACH | se     |
|          | 25.08.2014 | Added <b>-PS</b> option Added installation drawing                                                                                | Se     |
|          | 22.09.2014 | Added Block Diagram<br>Reworked Chapter 4.2.10                                                                                    | se     |