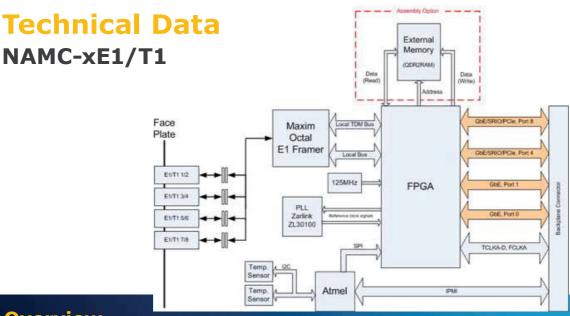


NAMC-xE1/T1 and NAMC-xE3/T3

Overview

The **NAMC-xE1/T1** is an Advanced Mezzanine Card (AMC) providing access to up to 16-E1/T1 interfaces in next generation systems based on MTCA and ATCA standards. The TDM-to-I-TDM converter connects the on-board E1/T1 interfaces with a Gigabit Ethernet port for system interconnect (I-TDM). The **NAMC-xE1/T1** is dedicated for (tele-)communication applications with extensive need for a high aggregation of multiple E1/T1 interfaces combined with access to switched networks based on high bandwidth Ethernet. The **NAMC-xE1/T1** is used for distributing signaling and payload data to DSP or CPU based processor resources within a MTCA or ATCA system.

Key features


- \cdot Interfaces at the front panel:
 - 8x E1/T1 (NAMC-8E1/T1) or
 - 16x E1/T1 (NAMC-16E1/T1) or
 - 4x E3/T3 (NAMC-4E3/T3)
- · Backplane
- 2xGbE (port 0 and 1)
- FPGA resource with up to 64-Mbit of Quad Data Rate[™] 2 (QDR2) SRAM
- extensive software support in combination with other N.A.T. AMC boards for any voice/ data application in ISDN, SS7, ATM, VoIP or 3G environments.

Ehlbeek 15a 30938 Burgwedel fon 05139-9980-0 fax 05139-9980-49

www.powerbridge.de info@powerbridge.de

Overview

The NAMC-xE1/T1 is available as a single width compact-, mid- or full-size AMC providing access to multiple E1/T1 or E3/T3 interfaces (NAMC-xE3/T3). The full-size version can be equipped with a mezzanine board offering additional 8E1/T1 line interfaces (NAMC-16E1/T1) or 4E3/T3 line interfaces (NAMC-4E3/T3).

The NAMC-xE1/T1 and NAMC-xE3/T3 are dedicated for (tele-)communication applications with extensive need for a high aggregation of multiple E1/T1 or E3/T3 interfaces combined with access to switched networks based on high bandwidth Ethernet.

FPGA and Memory

The NAMC-xE1/T1 is equipped with an ECP3 FPGA from Lattice which offers 70.000 logic elements and 4 Mbit internal memory. In addition two external QDR2 SRAM devices can be assembled, each offering 32 Mbit.

E1/T1 Access

The onboard DS26518 framer from Maxim/Dallas provides access to 8/16-E1/T1 lines at the front panel by four/eight RJ45 connectors. Besides the standard framing formats the NAMC**xE1/T1** supports framing standards as:

- T1 Super Frame (SF)
- T1 Extended Super Frame (ESF),
- T1 Digital Multiplexer (DM)
- T1 Switch Line Carrier -96 (SLC-96)

- E1 G.704 and G.706 (CRC-4 multiframe) The extremely sensitive input amplifier circuits support signal attenuation of up to -44dB making the board an optimal choice for all kind of monitoring applications.

TDM and I-TDM Interface

The E1/T1 framer interfaces to the on-board timeslot interchanger (TSI) chipset. The TSI as well as the TDM-to-I-TDM bridge are incorporated in an ECP3 FPGA from Lattice. The TSI allows flexible routing as well as multicasting of 64kbps timeslots between the various E1/ T1 streams. The TDM-to-I-TDM bridge converts the TDM oriented bit stream into Ethernet packets and vice versa. In addition to the I-TDM interface, the TSI offers an optional 32MHz clocked H.110-alike TDM backplane interface at the AMC connector (extended area).

Fabric Support

Fat Pipe

The **NAMC-xE1/T1** offers two bidirectional serial lanes which can be operated either as GbE,

PCIe or SRIO. The interfaces at NAMC-xE1/ T1 can be configured to implement either GbE: two x1 (port 4 and 8) or optionally PCIe: one x1 (port 4 or 8) or on request SRIO: two x1 (port 4 and 8)

Base Fabric

The **NAMC-xE1/T1** provides two 1000BaseX interfaces at port 0 and port 1 of the common options region of the AMC backplane connector.

Extender Mezzanines

For applications requiring more TDM interfaces, N.A.T. offers an extender mezzanine supplying 8 additional E1/T1 lines at the front panel: the NAMC-16E1/T1.

The NAMC-4E3/T3 offers a mounted mezzanine providing four E3/T3 lines which are accessible via four RJ45 interfaces at the front panel. T3 handles a bandwidth of 44.736 Mbit/s or 672 channels and E3 supports data transmissions of 34.368 Mbit/s or 512, a higher data speed compared with E1 (2.048 Mbit/s - 32 channels) or T1 (1.544 Mbit/s - 24 channels).

Key Features

FPGA and Memory

- · ECP3 FPGA from Lattice with 70.000 logic elements and 4 Mbit internal memory
- · QDR2 SRAM with up to 64-Mbit

Front Panel Interface

- · 8-/16-E1/T1 available via 4/8 RJ45
- · 4-E3/T3 available via four RJ45

Backplane Connectivity

· clock distribution via full bi-directional clock support using TCLK-A, -B, -C, -D at AMC connector

Base Fabric

· 2xGbE at AMC port 0 and port 1

Fat Pipe Interface Options

- · GbE x1 on ports 4 and 8 or optionally
- · PCIe x1 on port 4 or 8 or on request
- · SRIO x1 on ports 4 and 8

- **I-TDM Interface**
- · 1024 bidirectional 64kbit/s channels
- · 125 µs-mode and 1ms-mode support
- **TDM** (optional)

H.110 alike 32MHz clocked TDM interface connects to ports 12, 13 (data) and port 14 (sync) of the extended options region of the AMC connector

Indicator LEDs

· 8/16 (extension module) bicolour LEDs integrated in the RJ45 for E1 link status · 2 standard LEDs as fault indicator and

for general purpose status **Host Operating System Support**

I TNUX

Power Consumption · 12 V, 1A

Environmental Conditions

- · Operating temp.: 0°C to +60°C with forced cooling
- Storage temp.: -40°C to +85°C
- · Humidity: 10% to 90% rh noncondensina

Standard Compliance

- · PICMG AMC.0 Rev. 2.0/AMC.1 Rev. 1.0/ AMC.2 Rev. 1.0 (Type E2) · PCIe Base Spec. Rev. 1.1

 - · PICMG SFP.0 Rev. 1.0/SFP.1 Rev. 1.0 (Internal CC)
 - · IPMI Spec. v2.0 Rev. 1.0
 - · PICMG MTCA.0 Rev. 1.0
 - · ITU-T G.823 (Jitter Attenuation)