
The Embedded I/O Company

TDRV002-SW-25
Integrity Device Driver
Multiple Channel Serial Interface

Version 1.0.x

User Manual
Issue 1.0.0

November 2010

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany

Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com www.tews.com

TDRV002-SW-25 – Integrity Device Driver Page 2 of 38

TDRV002-SW-25
Integrity Device Driver

Multiple Channel Serial Interface

Supported Modules:
TPMC371
TPMC372
TPMC375
TPMC376
TPMC377
TPMC460
TPMC461
TPMC462
TPMC463
TPMC465
TPMC466
TPMC467
TPMC470
TCP460
TCP461
TCP462
TCP463
TCP465
TCP466
TCP467
TCP469
TCP470

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2010 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0.0 First Issue November 23, 2010

TDRV002-SW-25 – Integrity Device Driver Page 3 of 38

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 6

2.1 Driver Installation..6
2.2 TDRV002 Applications..6

3 API DOCUMENTATION ... 7
3.1 tdrv002Open ..7
3.2 tdrv002Close..9
3.3 tdrv002Write ..11
3.4 tdrv002Read...13
3.5 tdrv002Getc ...15
3.6 tdrv002SetBaud...17
3.7 tdrv002SetDataword ...19
3.8 tdrv002SetFlowControl...21
3.9 tdrv002ConfigureLoopback ...23
3.10tdrv002SetTrans ..25
3.11tdrv002ConfigureTimeout ..27

4 I/O REGISTER FUNCTIONS .. 29
4.1 WriteIODeviceRegister ...29
4.2 ReadIODeviceRegister ...31
4.3 ReadIODeviceStatus...33

5 APPENDIX.. 35
5.1 Software FIFOs..35

5.1.1 Changing Transmit FIFO Size ...35
5.1.2 Changing Receive FIFO Size ..35
5.1.3 Changing Interrupt Event FIFO Size..35

5.2 Baud Rate Tolerance ..36
5.3 Internal Loopback ...36
5.4 Example Applications...37

5.4.1 tdrv002exa-readAllChans.c..37
5.4.2 tdrv002exa-sendAllChans.c ...37
5.4.3 tdrv002exa-localLoopAllChans.c ...37
5.4.4 tdrv002exa-sendRead2Chans.c ..38
5.4.5 tdrv002exa-setTrans2Chans-RS232.c...38
5.4.6 tdrv002exa-setTrans2Chans-RS422.c...38
5.4.7 tdrv002exa-setTrans2Chans-RS485HD.c ...38

TDRV002-SW-25 – Integrity Device Driver Page 4 of 38

1 Introduction
The TDRV002-SW-25 Integrity device driver allows the operation of TDRV002 supported boards.

The driver uses a software FIFO for data that is received and for data that should be sent. Both FIFOs
have a size of 2048 characters by default.

An event FIFO with a size of 32 events is implemented to announce new data, and status messages.

The TDRV002-SW-25 device driver supports the following features:

SW-FIFO for transmit and receive
configuration of the data word (data and stop bits, parity mode)
setting baud rates (free scalable, no predefined values)
setting I/O interface (if supported by hardware)
support of hardware flow control (RTS/CTS) (if supported by hardware)
support of software flow control (Xon/Xoff)
support of local loopback mode
observation of the link status (DCD) (if supported by hardware)

The TDRV002-SW-25 supports the modules listed below:

TPMC371 8 Channel Serial Interface
TPMC372 4 Channel Serial Interface
TPMC375 8 Channel Serial Interface (programmable Interfaces)
TPMC376 4 Channel Serial Interface (programmable Interfaces)
TPMC377 4 Channel Isolated Serial Interface (programmable Interfaces)
TPMC460 16 Channel Serial Interface
TPMC461 8 Channel Serial Interface
TPMC462 4 Channel Serial Interface
TPMC463 4 Channel Serial Interface
TPMC465 8 Channel Serial Interface (programmable Interfaces)
TPMC466 4 Channel Serial Interface (programmable Interfaces)
TPMC467 4 Channel Serial Interface (programmable Interfaces)
TPMC470 4 Channel Isolated Serial Interface (programmable Interfaces)
TCP460 16 Channel Serial Interface
TCP461 8 Channel Serial Interface
TCP462 4 Channel Serial Interface
TCP463 4 Channel Serial Interface
TCP465 8 Channel Serial Interface (programmable Interfaces)
TCP466 4 Channel Serial Interface (programmable Interfaces)
TCP467 4 Channel Serial Interface (programmable Interfaces)
TCP469 8 Channel Isolated Serial Interface (programmable Interfaces)
TCP470 4 Channel Isolated Serial Interface (programmable Interfaces)

TDRV002-SW-25 – Integrity Device Driver Page 5 of 38

In this document all supported modules and devices will be called TDRV002. Specials for
certain devices will be advised.

To get more information about the features and use of TDRV002 devices, it is recommended to read
the manuals listed below.

User manual of the used module
Engineering Manual of the used module

TDRV002-SW-25 – Integrity Device Driver Page 6 of 38

2 Installation
The following files are located on the distribution media:

Directory path ‘.\TDRV002-SW-25\’:

tdrv002.c TDRV002 device driver source
tdrv002def.h TDRV002 driver include file
tdrv002.h TDRV002 include file for driver and application
tdrv002api.c Application interface, simplifies device access
tdrv002api.h Include file for API and applications
examples*.c Path with some small example applications
TDRV002-SW-25-1.0.0.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

2.1 Driver Installation
Copy the TDRV002 driver files (tdrv002.c, tdrv002.h, and tdrv002def.h) into a desired driver or project
path. The driver source file tdrv002.c must be included into the kernel project and the project must be
rebuilt. The driver will be automatically started after booting the image and the driver will be requested
if a matching device is detected in the system.

2.2 TDRV002 Applications
Copy the TDRV002 API files (tdrv002api.c, tdrv002api.h, and tdrv002.h) into a desired application
path. And include tdrv002api.c into the application project.

The application source file must include tdrv002api.h. If these steps are done, the TDRV002 API can
be used and the devices will be accessible.

TDRV002-SW-25 – Integrity Device Driver Page 7 of 38

3 API Documentation
3.1 tdrv002Open

Name

tdrv002Open() – open a device

Synopsis

TDRV002_HANDLE *tdrv002Open
(

char *name
)

Description

Before I/O operations can be performed to a device, a descriptor must be opened with a call to this
function.

This function will create and initialize a descriptor for the device. The returned handle must be
specified for all other functions accessing the device.

Parameters

name
This parameter specifies the name of the device. Generally the TDRV002 device names looks
like ‘tdrv002_<major>_<minor>‘, where <major> specifies the module and <minor> specifies the
local channel number. <major> and <minor> are both zero base counts.
For example, the name of the third channel of the first board will be ‘tdrv002_0_2’.
If more than one TDRV002 board is used, the order of the board detection and the assigned
<major> number is system and BSP dependent.

TDRV002-SW-25 – Integrity Device Driver Page 8 of 38

Example

#include “tdrv002api.h”

TDRV002_HANDLE pDev;

/*
** open descriptor for a device
*/
pDev = tdrv002Open(“tdrv002_0_0”);
if (pDev == NULL)
{

/* handle open error */
}

Returns

A device handle for the device descriptor, or NULL if the function fails.

TDRV002-SW-25 – Integrity Device Driver Page 9 of 38

3.2 tdrv002Close

Name

tdrv002Close() – close a device

Synopsis

Error tdrv002Close
(

TDRV002_HANDLE *devHdl
)

Description

This function closes a previously opened device.

If this function is called, the descriptor for the device will be released and the device is no longer
accessible by it.

Parameters

devHdl
This value specifies the device handle which identifies the device. The device handle has been
previously returned by tdrv002Open (see chapter 3.1 tdrv002Open).

Example

#include “tdrv002api.h”

TDRV002_HANDLE pDev;
Error errVal;

/*
** close the device
*/
errVal = tdrv002Close(pDev);
if (errVal != Success)
{

/* handle close error */
}

TDRV002-SW-25 – Integrity Device Driver Page 10 of 38

Returns

Success if device has been closed or Failure if the specified handle has been invalid.

TDRV002-SW-25 – Integrity Device Driver Page 11 of 38

3.3 tdrv002Write

Name

tdrv002Write() – write a buffer to the device

Synopsis

int tdrv002Write
(

TDRV002_HANDLE *devHdl,
char *buffer,
int len

)

Description

This function writes a buffer of characters to the device. The content of the specified buffer will be
transferred to the device.

Parameters

devHdl
This value specifies the device handle which identifies the device. The device handle has been
previously returned by tdrv002Open (see chapter 3.1 tdrv002Open).

buffer
This argument specifies the start of the output buffer.

len
This value specifies the number of characters that shall be written.

TDRV002-SW-25 – Integrity Device Driver Page 12 of 38

Example

#include “tdrv002api.h”

char *txtBuf = “Hello world!”;
TDRV002_HANDLE pDev;
int numWritten;

/*
** write a string to the device
*/
numWritten = tdrv002Write(pDev, txtBuf, strlen(txtBuf));
if (numWritten < 0)
{

/* handle write error */
}
else if (numWritten != strlen(txtBuf))
{

/* not all characters have been written */
}
else
{

/* write complete */
}

Returns

The number of transferred (written) characters, or <0 (negative “Error”) if the write function failed.

TDRV002-SW-25 – Integrity Device Driver Page 13 of 38

3.4 tdrv002Read

Name

tdrv002Read() – read data from the device

Synopsis

int tdrv002Read
(

TDRV002_HANDLE *devHdl,
char *buffer,
int len

)

Description

This function reads data from a device. The received characters will be transferred into the specified
buffer. The function will return if the buffer is filled, no more data is available at the device, or if the
timeout condition occurred. How the timeout condition can be set, is described in chapter
3.11 tdrv002ConfigureTimeout.

Parameters

devHdl
This value specifies the device handle which identifies the device. The device handle has been
previously returned by tdrv002Open (see chapter 3.1 tdrv002Open).

buffer
This argument specifies the start of the input buffer where the received data will be stored to.

len
This value specifies the size of the buffer and defines the maximum number of characters that
shall be read.

TDRV002-SW-25 – Integrity Device Driver Page 14 of 38

Example

#include “tdrv002api.h”

#define MAXTXTLEN 25

char txtBuf[MAXTXTLEN];
TDRV002_HANDLE pDev;
int numRead;

/*
** read data from the device
*/
numRead = tdrv002Read(pDev, txtBuf, MAXTXTLEN);
if (numRead < 0)
{

/* handle read error */
}
else if (numRead == 0)
{

/* no data read */
}
else
{

/* read complete */
}

Returns

The number of transferred (read) characters, or <0 (negative “Error”) if the read function failed.

TDRV002-SW-25 – Integrity Device Driver Page 15 of 38

3.5 tdrv002Getc

Name

tdrv002Getc() – get the next character from the device

Synopsis

char tdrv002Getc
(

TDRV002_HANDLE *devHdl
)

Description

This function tries to read the next character from the specified device. If a character is available, the
function will return this character immediately. If no character is available, the function will wait until a
character is received and it will return this character. This function will not issue a timeout.

Parameters

devHdl
This value specifies the device handle which identifies the device. The device handle has been
previously returned by tdrv002Open (see chapter 3.1 tdrv002Open).

Example

#include “tdrv002api.h”

char inChar;
TDRV002_HANDLE pDev;

/*
** get the next character from the device
*/
inChar = tdrv002Getc(pDev);
if (inChar == EOF)
{

/* handle EOF error */
}

TDRV002-SW-25 – Integrity Device Driver Page 16 of 38

Returns

The function returns the received character, or EOF if the function has failed.

TDRV002-SW-25 – Integrity Device Driver Page 17 of 38

3.6 tdrv002SetBaud

Name

tdrv002SetBaud() – set baud rate of the device

Synopsis

Error tdrv002SetBaud
(

TDRV002_HANDLE *devHdl,
UINT4 newBaud

)

Description

This function sets the baud rate for the specified device. The device will be configured to the specified
baud rate or to the baud rate that matches best. (Refer to chapter 5.2 Baud Rate Tolerance)

Parameters

devHdl
This value specifies the device handle which identifies the device. The device handle has been
previously returned by tdrv002Open (see chapter 3.1 tdrv002Open).

newBaud
This value specifies the new baud rate.

Example

#include “tdrv002api.h”

TDRV002_HANDLE pDev;
Error errVal;

/*
** set baud rate to 115200 Baud
*/
errVal = tdrv002SetBaud(pDev, 115200);
if (errVal != Success)
{

/* handle error */
}

TDRV002-SW-25 – Integrity Device Driver Page 18 of 38

Returns

The function returns Success if baud rate has been set or Failure if the function has failed.

TDRV002-SW-25 – Integrity Device Driver Page 19 of 38

3.7 tdrv002SetDataword

Name

tdrv002SetDataword() – set data bits, stop bit and parity mode for the device

Synopsis

Error tdrv002SetDataword
(

TDRV002_HANDLE *devHdl,
UINT1 dataBits,
SerialStopBitSetting stopBits,
SerialParitySetting parity

)

Description

This function sets the number of data bits, the length of the stop bit and the parity mode.

Parameters

devHdl
This value specifies the device handle which identifies the device. The device handle has been
previously returned by tdrv002Open (see chapter 3.1 tdrv002Open).

dataBits
This value specifies the new number of data bits. Allowed values are 5, 6, 7 and 8 data bits.

stopBits
This value specifies the length of the stop bit. The following values are allowed:
Value Descrition
OneStopBit The stop bit is set to a length of 1 bit.
OneAndAHalfStopBits The stop bit is set to a length of 1.5 bits.

(This configuration is allowed for 5 data bits only)
TwoStopBits The stop bit is set to a length of 2 bit.

(This configuration is allowed if 6, 7, and 8 data bits only)

TDRV002-SW-25 – Integrity Device Driver Page 20 of 38

parity
This value specifies the parity mode. The following values are allowed:
Value Descrition
NoParity No parity will be used.
OddParity Odd parity will be used
EvenParity Even parity will be used

Example

#include “tdrv002api.h”

TDRV002_HANDLE pDev;
Error errVal;

/*
** prepare device for configuration with 8 databits, 1 stopbit
** and no parity
*/
errVal = tdrv002SetDataword(pDev, 8, OneStopBit, NoParity);
if (errVal != Success)
{

/* handle error */
}

Returns

The function returns Success if all settings were done or Failure if at least one setting failed.

TDRV002-SW-25 – Integrity Device Driver Page 21 of 38

3.8 tdrv002SetFlowControl

Name

tdrv002SetFlowControl() – Configure flow control for the device

Synopsis

Error tdrv002SetFlowControl
(

TDRV002_HANDLE *devHdl,
UINT1 newHandshake

)

Description

This function configures the flow control mode.

Parameters

devHdl
This value specifies the device handle which identifies the device. The device handle has been
previously returned by tdrv002Open (see chapter 3.1 tdrv002Open).

newHandshake
This value specifies the flow control (handshake) mode. The following values are allowed:
Value Description
TDRV002_HANDSHAKE_OFF Flow control off.
TDRV002_HANDSHAKE_XON_XOFF Use Xon/Xoff flow control.
TDRV002_HANDSHAKE_HARDWARE Use hardware flow control (RTS/CTS lines).

TDRV002-SW-25 – Integrity Device Driver Page 22 of 38

Example

#include “tdrv002api.h”

TDRV002_HANDLE pDev;
Error errVal;

/*
** configure device using Xon/Xoff flow control
*/
errVal = tdrv002SetFlowControl(pDev, TDRV002_HANDSHAKE_XON_XOFF);
if (errVal != Success)
{

/* handle error */
}

Returns

The function returns Success if flow control has been configured or Failure if the function failed.

TDRV002-SW-25 – Integrity Device Driver Page 23 of 38

3.9 tdrv002ConfigureLoopback

Name

tdrv002ConfigureLoopback() – Configure local loopback mode

Synopsis

Error tdrv002ConfigureLoopback
(

TDRV002_HANDLE *devHdl,
Boolean enableLoopback

)

Description

This function configures if local (internal) loopback mode is enabled. This feature allows a functional
test of the device without an external connection.

Parameters

devHdl
This value specifies the device handle which identifies the device. The device handle has been
previously returned by tdrv002Open (see chapter 3.1 tdrv002Open).

enableLoopback
This value specifies if local loopback is enabled or not. If the value is true, the internal
connection will be enabled, otherwise the device will be connected to external I/O interface.

Example

#include “tdrv002api.h”

TDRV002_HANDLE pDev;
Error errVal;

/*
** enable local loopback mode
*/
errVal = tdrv002ConfigureLoopback(pDev, true);
if (errVal != Success)
{

/* handle error */
}

TDRV002-SW-25 – Integrity Device Driver Page 24 of 38

Returns

The function returns Success, or Failure if the function failed.

TDRV002-SW-25 – Integrity Device Driver Page 25 of 38

3.10tdrv002SetTrans

Name

tdrv002SetTrans() – Configure programmable transceiver interface

Synopsis

Error tdrv002SetTrans
(

TDRV002_HANDLE *devHdl,
UINT4 newTrConf

)

Description

This function configures programmable transceiver interfaces. The function will fail for channels with
non programmable transceivers.

Parameters

devHdl
This value specifies the device handle which identifies the device. The device handle has been
previously returned by tdrv002Open (see chapter 3.1 tdrv002Open).

newTrConf
This value specifies how the interface shall be configured. The value is a combination of flags,
which allows individual settings.

The function of the interface configuration pins can be found in the corresponding
hardware User Manual.

The following flags are defined:
Flag Description
TDRV002_TRANS_RS485_RS232_SEL RS485/RS232# configuration pin
TDRV002_TRANS_HDPLX_SEL HDPLX configuration pin
TDRV002_TRANS_RENA_SEL RENA configuration pin
TDRV002_TRANS_RTERM_SEL RTERM configuration pin
TDRV002_TRANS_TTERM_SEL TTERM configuration pin
TDRV002_TRANS_SLEWLIMIT_SEL SLEWLIMIT configuration pin
TDRV002_TRANS_SHDN_SEL SHDN configuration pin
TDRV002_AUTO_RS485_ENABLE_SEL Enable Auto RS485 Operation mode of

XR17D15x

TDRV002-SW-25 – Integrity Device Driver Page 26 of 38

For a simpler configuration, the definitions of common configurations can be used. These
definitions can be used instead of the combination of flags above. The following configurations
are defined:
Configuration Description
TDRV002_INTF_OFF Interface disabled
TDRV002_INTF_RS232 RS232
TDRV002_INTF_RS422 RS422 (Multidrop / Full duplex)
TDRV002_INTF_RS485FDM RS485 (Full duplex master)
TDRV002_INTF_RS485FDS RS485 (Full duplex slave)
TDRV002_INTF_RS485HD RS485 (Half duplex)

Example

#include “tdrv002api.h”

TDRV002_HANDLE pDev;
Error errVal;

/*
** 1st: configure RS422
*/
errVal = tdrv002SetTrans(pDev, TDRV002_INTF_RS422);
if (errVal != Success)
{

/* handle error */
}

…

/*
** 2nd: configure RS422 (using flags)
*/
errVal = tdrv002SetTrans(pDev, (TDRV002_TRANS_RS485_RS232_SEL |

TDRV002_TRANS_RTERM_SEL));
if (errVal != Success)
{

/* handle error */
}

Returns

The function returns Success if the interface has been configured or Failure if the function
failed.

TDRV002-SW-25 – Integrity Device Driver Page 27 of 38

3.11tdrv002ConfigureTimeout

Name

tdrv002ConfigureTimeout() – Configure timeouts

Synopsis

Error tdrv002ConfigureTimeout
(

TDRV002_HANDLE *devHdl,
Boolean immReturn,
Boolean neverTimeout,
int newTimeout

)

Description

This function defines the timeout behavior of tdrv002Read (see chapter 3.4 tdrv002Read).

Parameters

devHdl
This value specifies the device handle which identifies the device. The device handle has been
previously returned by tdrv002Open (see chapter 3.1 tdrv002Open).

immReturn
If this value is true, the read operation will return immediately, even if no data is available. The
following arguments will be ignored.

neverTimeout
If this value is true, the read operation will wait until at least one character is received. The
specified timeout time will be ignored.
(This value will be ignored if immReturn is true.)

newTimeout
This value specifies the time the read function is willing to wait for a character receive before it
returns. The timeout is specified in seconds.
(This value will be ignored if immReturn or neverTimeout is true.)

TDRV002-SW-25 – Integrity Device Driver Page 28 of 38

Example

#include “tdrv002api.h”

TDRV002_HANDLE pDev;
Error errVal;

/*
** Set timeout to 10 seconds
*/
errVal = tdrv002ConfigureTimeout(pDev, false, false, 10)
if (errVal != Success)
{

/* handle error */
}

…

/*
** Set timeout for immediate read
*/
errVal = tdrv002ConfigureTimeout(pDev, true, false, 0)
if (errVal != Success)
{

/* handle error */
}

Returns

The function returns Success, or Failure if an invalid device is specified.

TDRV002-SW-25 – Integrity Device Driver Page 29 of 38

4 I/O Register Functions
These functions are used by the TDRV002 API to access the TDRV002. Therefore, the following
chapter just gives a short overview over the available accesses. Most accesses are described in the
Integrity BSP Guide in the chapter ‘Serial Interfaces’. The TDRV002 specific functions will be
described below more detailed.

4.1 WriteIODeviceRegister

Name

WriteIODeviceRegister() – Write to device I/O register

Synopsis

Error WriteIODeviceRegister
(

IODevice TheIODevice,
Value RegisterNumber,
Value RegisterValue

)

Description

This function writes to the specified devices I/O register.

Parameters

IODevice
This parameter specifies the IODevice.

TDRV002-SW-25 – Integrity Device Driver Page 30 of 38

RegisterNumber
This parameter specifies the device I/O register number (function) that shall be accessed.
The following register numbers are implemented for the TDRV002:
Register Number Description
IODEV_SERIAL_NO_DATA_BITS Configure the number of transferred data bits

(Refer to the Integrity documentation)
IODEV_SERIAL_NO_STOP_BITS Configure the length of the stop bit

(Refer to the Integrity documentation)
IODEV_SERIAL_PARITY Configure the parity mode

(Refer to the Integrity documentation)
IODEV_SERIAL_BAUDRATE Configure the baud rate

(Refer to the Integrity documentation)
The baud rate may be modified to the nearest
matching value. For more information refer to
chapter 5.2 Baud Rate Tolerance.

IODEV_SERIAL_SW_FLOW_CONTROL Enable/Disable software flow control (Xon/Xoff)
(Refer to the Integrity documentation)

IODEV_SERIAL_HW_FLOW_CONTROL Enable/Disable hardware flow control
(RTS/CTS)
(Refer to the Integrity documentation)

IODEV_SERIAL_DATA Send a character
(Refer to the Integrity documentation)

TDRV002_LOCALLOOP_MODE Enable/Disable local (internal) loopback mode
(Refer to chapter 5.3 Internal Loopback)

TDRV002_TRANSINTERFACE Configure programmable transceiver interface
RegisterValue specifies the new configuration
value (Refer to chapter 3.10 tdrv002SetTrans)

RegisterValue
This parameter specifies the registers value.

Returns

Success on successful execution, or a suitable error code if the function fails.

TDRV002-SW-25 – Integrity Device Driver Page 31 of 38

4.2 ReadIODeviceRegister

Name

ReadIODeviceRegister() – Read device I/O register

Synopsis

Error ReadIODeviceRegister
(

IODevice TheIODevice,
Value RegisterNumber,
Value *TheValue

)

Description

This function reads the value from a specified devices I/O register.

Parameters

TheIODevice
This parameter specifies the IODevice.

TDRV002-SW-25 – Integrity Device Driver Page 32 of 38

RegisterNumber
This parameter specifies the device I/O register number (function) that shall be accessed.
The following register numbers are implemented for the TDRV002:
Register Number Description
IODEV_SERIAL_NO_DATA_BITS Get number of configured data bits

(Refer to the Integrity documentation)
IODEV_SERIAL_NO_STOP_BITS Get the configured length of the stop bit

(Refer to the Integrity documentation)
IODEV_SERIAL_PARITY Get the configured parity mode

(Refer to the Integrity documentation)
IODEV_SERIAL_BAUDRATE Get the actual configured baud rate

(Refer to the Integrity documentation)
IODEV_SERIAL_SW_FLOW_CONTROL Get the configuration of the software flow

control (Xon/Xoff)
(Refer to the Integrity documentation)

IODEV_SERIAL_HW_FLOW_CONTROL Get the configuration of the hardware flow
control (RTS/CTS)
(Refer to the Integrity documentation)

IODEV_SERIAL_DATA Read a received character
(Refer to the Integrity documentation)

IODEV_LINK_STATUS Get the link state (state of DCD line)
(Refer to the Integrity documentation)

TDRV002_LOCALLOOP_MODE Get configuration of the local loopback mode
(RTS/CTS)
(Refer to chapter 5.3 Internal Loopback)

TDRV002_TRANSINTERFACE Get the configuration of the programmable
transceiver interface.
The returned value is a combination of flags
compatible to the values used for
WriteIODeviceRegister.
(Refer also to chapter 3.10 tdrv002SetTrans)

TheValue
This parameter points to a buffer where the read value will be returned.

Returns

Success on successful execution, or a suitable error code if the function fails.

TDRV002-SW-25 – Integrity Device Driver Page 33 of 38

4.3 ReadIODeviceStatus

Name

ReadIODeviceStatus() – Read device I/O status

Synopsis

Error ReadIODeviceRegister
(

IODevice TheIODevice,
Value StatusNumber,
DestAddress Destination,
Address Length

)

Description

This function reads the value from a specified devices I/O register.

Parameters

TheIODevice
This parameter specifies the IODevice.

StatusNumber
This parameter specifies the status number that shall be read.
The following status numbers are implemented for the TDRV002:
Status Number Description
IODEV_INTR_STATUS Get stored interrupt status

(refer to Integrity manual)
TDRV002_STAT_RX Get receive status

Destination
This parameter points to a application supplied buffer where the status information will be
returned.
Status Number Status structure
IODEV_INTR_STATUS InterruptStatus – Supported Interrupt Status:

LinkDetected, LinkLost, ReadCharacterCompleted,
NoPendingInterrupt
(For a description refer to the Integrity manuals)

TDRV002_STAT_RX tdrv002RxStat (see Special Status Structures below)

Length
This parameter specifies the length of the supplied buffer.

TDRV002-SW-25 – Integrity Device Driver Page 34 of 38

Special Status Structures

typedef struct
{

Value numAvail;
Boolean fifoOverrunErr;
Boolean overrunErr;
Boolean parityErr;
Boolean framingErr;

} tdrv002RxStat;

numAvail
Returns the number of available characters in the SW-FIFO.

fifoOverrunErr
Returns true if a FIFO overrun error has occurred. The driver will remove the error flag internally.

overrunErr
Returns true if an overrun error, indicated by hardware, has occurred. The driver will remove the
error flag internally.

parityErr
Returns true if a parity error has occurred. The driver will remove the error flag internally.

framingErr
Returns true if a framing error has occurred. The driver will remove the error flag internally.

Returns

Success on successful execution, or a suitable error code if the function fails.

TDRV002-SW-25 – Integrity Device Driver Page 35 of 38

5 Appendix
5.1 Software FIFOs

There are three FIFOs used for this driver. First, there is a transmit FIFO, where data is stored before
it is written to the UART channel. This allows writing data to the device also if the previous characters
have not been transferred. The application can continue working and the data will be written
asynchronously.

Second, there is a receive FIFO. All incoming characters will be stored into this FIFO and the read
function will transfer data from this FIFO to the application. This FIFO prevents data loss. Received
data will be stored into the FIFO and can be read by the application later.

The third and last FIFO stores events that occur for the serial channel. The events will be stored into
the FIFO. If the FIFO is filled and a new event shall be stored, the oldest event will be overwritten. If a
new event is stored, the driver will notify a waiting task (using INTERRUPT_IODeviceNotifyTask()).

5.1.1 Changing Transmit FIFO Size
The size of the transmit FIFO is specified in tdrv002def.h. To change the number of characters that
can be stored in the FIFO, change the value of the TXBUFSIZE definition.

After changing the FIFO size, the driver must be rebuilt.

5.1.2 Changing Receive FIFO Size
The size of the receive FIFO is specified in tdrv002def.h. To change the number of characters that can
be stored in the FIFO, change the value of the RXBUFSIZE definition.

After changing the FIFO size, the driver must be rebuilt.

5.1.3 Changing Interrupt Event FIFO Size
The size of the Interrupt Event FIFO is specified in tdrv002def.h. To change the number of characters
that can be stored in the FIFO, change the value of the TDRV002_NUM_SERIAL_STATUS definition.

After changing the FIFO size, the driver must be rebuilt.

TDRV002-SW-25 – Integrity Device Driver Page 36 of 38

5.2 Baud Rate Tolerance
If a specified baud rate is not configurable exactly, the driver calculates the nearest configurable baud
rate and checks if the difference is tolerable. The default setting is 2.5%, which will be tolerated for
most communications. If a different tolerance is needed, the value of MAXBAUDDIFF can be modified
in tdrv002def.h. The value is specified in 1/10% of the desired value.

After changing the value for baud rate tolerance, the driver must be rebuilt.

5.3 Internal Loopback
The internal loopback mode connects output lines with input lines of the corresponding channel. This
allows testing the software and general board access without any external wiring.

If internal loopback is enabled, all I/O lines can be used regardless if they are supported by board I/O
or not.

TDRV002-SW-25 – Integrity Device Driver Page 37 of 38

5.4 Example Applications
The example application shall give an overview about the use of the TDRV002 devices and the how to
use the TDRV002 API.

5.4.1 tdrv002exa-readAllChans.c
This simple example executes one simple read data on every TDRV002 device and prints the
received data.

Program flow:
open devices
set receive timeout
read input data and print out
close devices

5.4.2 tdrv002exa-sendAllChans.c
This simple example sends a small text on every TDRV002 device.

Program flow:
open devices
send text to devices
close devices

5.4.3 tdrv002exa-localLoopAllChans.c
This is a simple example which sends data in local loopback mode and receives and prints out the
data afterwards.

Program flow:
open devices
set receive timeout
enable local loop back mode
send text to devices
read input data and print out
disable local loop back mode
close devices

TDRV002-SW-25 – Integrity Device Driver Page 38 of 38

5.4.4 tdrv002exa-sendRead2Chans.c
This example transfers a text from one TDRV002 device to a second TDRV002 device and back. If the
text has been transferred a few times, the baud rate will be changed and the text will be transferred
again. This will be repeated for the configured baud rates.

Program flow:
open devices
copy source text into buffer 1
loop over baud rates

configure baud rate
configure receive timeout
repeat for n-times

send text (buffer 1) to 1st device
receive text (in buffer 2) from 2nd device
send text (buffer 2) to 2nd device
receive text (in buffer 1) from 1st device

compare source text and buffer 1
close devices

By default, this example uses ‘tdrv002_0_1’ and ‘tdrv002_0_2’.

5.4.5 tdrv002exa-setTrans2Chans-RS232.c
This example configures two channels with programmable transceiver into RS232 mode.

Program flow:
open devices
configure programmable interfaces for RS232
close devices

By default, this example uses ‘tdrv002_0_1’ and ‘tdrv002_0_2’.

5.4.6 tdrv002exa-setTrans2Chans-RS422.c
This example configures two channels with programmable transceiver into RS422 mode.

Program flow:
open devices
configure programmable interfaces for RS422
close devices

By default, this example uses ‘tdrv002_0_1’ and ‘tdrv002_0_2’.

5.4.7 tdrv002exa-setTrans2Chans-RS485HD.c
This example configures two channels with programmable transceiver into RS485 mode.

Program flow:
open devices
configure programmable interfaces for RS485HD
close devices

By default, this example uses ‘tdrv002_0_1’ and ‘tdrv002_0_2’.

