
The Embedded I/O Company

TDRV002-SW-65
Windows Device Driver
Multiple Channel Serial Interface

Version 2.1.x

User Manual
Version 2.1.3
July 2021

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany

Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com www.tews.com

TDRV002-SW-65 – Windows Device Driver Page 2 of 17

TDRV002-SW-65
Windows Device Driver

Multiple Channel Serial Interface

Supported Modules:
TPMC37x
TPMC46x
TPMC47x
TXMC37x
TXMC46x
TCP46x
TCP47x

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2004-2021 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0.0 First Issue December 2, 2004
1.1.0 File list extended April 5, 2005
1.2.0 New modules, support of programmable transceivers May 15, 2006
1.2.1 File list extended August 25, 2006
1.2.2 Files moved to subdirectory June 23, 2008
2.0.0 Support for Windows 7 added March 9, 2011
2.0.1 Default Configuration in Property Page

Chapter ‘Known Problems’ added
March 29, 2011

2.0.2 Chapter ‘Known Problems’ modified November 17, 2011
2.1.0 Support of TXMC375 added,

Chapter “Default Configuration” modified
Chapter “Device and Software De-installation” added

January 14, 2014

2.1.1 Support of TPMC378 added May 25, 2014
2.1.2 Support of TCP468, TXMC376, TXMC463 and TXMC465 added

Table of Supported Modules renewed
January 22, 2016

2.1.3 Support for Windows 10 added.
Support for earlier Windows versions removed.

July 1, 2021

TDRV002-SW-65 – Windows Device Driver Page 3 of 17

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 6

Software Installation ...62.1
2.1.1 Windows 10 ..6
Confirming Driver Installation ...62.2
Device and Software De-Installation ...72.3
2.3.1 Temporary Remove and Reinstallation of Devices ..7
2.3.2 Permanent Remove of Devices..7
2.3.3 De-installation of the Software..7

3 DEFAULT CONFIGURATION .. 8
Basic Port Settings ...83.1
Advanced Port Settings ...83.2

4 DEVICE DRIVER PROGRAMMING ... 9
TDRV002 Files and I/O Functions..104.1
4.1.1 Opening a TDRV002 Device ..10
4.1.2 Closing a TDRV002 Device..12
4.1.3 TDRV002 Device I/O Control Functions...13

4.1.3.1 IOCTL_TDRV002_CONF_TRANS...15

5 KNOWN PROBLEMS... 17
Order of Serial Ports ...175.1
COM Port Assignment on Higher Port Numbers ...175.2
Settings in HyperTerminal ...175.3

TDRV002-SW-65 – Windows Device Driver Page 4 of 17

1 Introduction
The TDRV002-SW-65 Windows device driver is a kernel mode driver which allows the operation of the
supported hardware modules on an Intel or Intel-compatible Windows operating system.

The standard file input and output (I/O) functions (CreateFile, CloseHandle, ReadFile, ReadFileEx,
WriteFile, WriteFileEx and DeviceIoControl) provide the basic interface for opening and closing a
communications resource handle and for performing read and write operations.

The TDRV002 device driver is compatible to the standard Windows serial device driver (serial.sys).

The TDRV002-SW-65 device driver supports the modules listed below:

M
od

ul
e

Se
ria

l
In
te
rf
ac
es

Pr
og

ra
m
m
ab

le
In
te
rf
ac
es

FI
FO

-S
iz
e

(B
yt
es
)

Is
ol
at
ed

Fo
rm

Fa
ct
or

C
on

du
ct
io
n

C
oo

le
d

TPMC460 16 64 PMC
TPMC461 8 64 PMC
TPMC462 4 64 PMC
TPMC463 4 64 PMC

TXMC463 4 256 XMC

TCP460 16 64 cPCI
TCP461 8 64 cPCI
TCP462 4 64 cPCI
TCP463 4 64 cPCI

TDRV002-SW-65 – Windows Device Driver Page 5 of 17

M
od

ul
e

Se
ria

l
In
te
rf
ac
es

Pr
og

ra
m
m
ab

le
In
te
rf
ac
es

FI
FO

-S
iz
e

(B
yt
es
)

Is
ol
at
ed

Fo
rm

Fa
ct
or

C
on

du
ct
io
n

C
oo

le
d

TCP468 4 64 cPCI

TDRV002-SW-65 – Windows Device Driver Page 6 of 17

2 Installation
Following files are located in directory TDRV002-SW-65 on the distribution media:

tdrv002bus\ Directory containing bus driver files
tdrv002port\ Directory containing serial port driver files
installer_32bit.exe Installation tool for 32bit systems
installer_64bit.exe Installation tool for 64bit systems
dpinst.xml Installation XML file

tdrv002.h Header file with IOCTL codes and structure definitions
example\tdrv002exa.c Example application
TDRV002-SW-65-2.1.3.pdf This document
Release.txt Information about the Device Driver Release
ChangeLog.txt Release history

Software Installation2.1

2.1.1 Windows 10
This section describes how to install the TDRV002-SW-65 Device Driver on a Windows 10 (32bit or
64bit) operating system.

Depending on the operating system type, execute the installer binary for either 32bit or 64bit systems.
This will install all required driver files using an installation wizard.

Copy needed files (tdrv002.h) to desired target directory.

After successful installation a device is created for each channel found (TDRV002_1, TDRV002_2 ...).

Confirming Driver Installation2.2
To confirm that the driver has been properly loaded, perform the following steps:

1. Open the Windows Device Manager:

a. Open the "Control Panel" from "My Computer" and then click the "Device Manager"
entry.

2. Click the "+" in front of “Embedded I/O”.
The enumerator device "<Board Type> - (<n> Serial Ports Enumerator (TDRV002))" should
appear, where <Board Type> displays the name of the mounted board and <n> the number of
supported serial channels.

3. Click the "+" in front of "Ports (COM & LPT)".
The serial port devices "<Board Type> Serial Port Device (COM<x>)" should appear, where
<Board Type> displays the name of the mounted board and <x> the assigned COM channel
number.

TDRV002-SW-65 – Windows Device Driver Page 7 of 17

Device and Software De-Installation2.3
To prevent a reservation of COM-ports that will not be needed any more it is necessary to remove
devices correctly. Therefor you have to decide, if the port should be removed temporarily – the board
will be remounted later and the COM names should be used again – or if it should be removed
permanently and the COM names can be assigned to other devices.

2.3.1 Temporary Remove and Reinstallation of Devices
Removing devices temporary is done quite simple, by a shutdown of the system and remove of the
hardware. Windows will keep the configuration and naming of the devices, but the devices will not be
shown.

For a reinstallation it is necessary that the hardware is mounted to the same slot again. The system
will automatically start using all old configurations and names.

If the board is mounted in another slot, Windows will recognize new devices and will assign
new COM names.

2.3.2 Permanent Remove of Devices
For a permanent and clean remove of serial devices it is necessary that the hardware, which shall be
removed, is present in the system. The system must be started and the devices must be de-installed
using the Windows Device Manager. First remove the port devices and afterwards the enumerator
device. This will make sure, that the system will allow a reuse of the COM port names. After that the
system should be stopped and the hardware can be removed.

If a new serial board is mounted to the system afterwards, windows will assign COM port names
beginning with the first unused number, including the COM names of the de-installed ports.

2.3.3 De-installation of the Software
If the software has been installed with the installer application as described in 2.1.1, the driver should
be de-installed using “Software” in the “Control Panel”. To avoid a permanent reservation of COM
names, the affected devices should be removed first as described in 2.3.2.

TDRV002-SW-65 – Windows Device Driver Page 8 of 17

3 Default Configuration
The default configuration of a serial port can be modified by using the property page of the port device.

The property page can be opened from the device manager. A right-click to the port device will open a
menu where ‘Properties’ can be selected. The property page will open. The tab ‘Port Settings’ will
show the default settings of the port.

Basic Port Settings3.1
The property page allows changing the basic settings of the serial port. The basic port settings allow
specifying the port setting which is used when opening the serial device.

The basic port settings contain the “Standard Serial Settings” (Baudrate, Data Bits etc.) and the
“Transceiver Settings”.

The “Transceiver Settings” allow configuring the interface configuration of a port if the port supports a
programmable interface. Otherwise this setting will show the supported interface and cannot be
modified.

All these settings will be used to configure the port when opening. The ports may be used by
application without extra configuration after opening.

Remember that applications like terminal applications usually change communication
parameters after starting. The communication parameters must be configured in the terminal
application.

Advanced Port Settings3.2
The advanced port settings can be opened by pressing the ’Advanced’ Button at the Basic Port
Settings page.

This site allows modification of the buffer trigger levels for ‘Receive Buffer’ and ‘Transmit Buffer’.
Increasing a value means, that system load is decreased, but the risk of an overrun for receive, or a
gap in transmission stream is increased.

Disabling the FIFOs is not recommended, as this will increase the possibility of data loss and will also
increase system load.

The site also allows assigning COM-Port numbers. This may be useful for applications that only allow
the use of some special port numbers.

The “Advanced Port Settings” will only be used on device startup. Therefore it is necessary to
restart the device after modifying any of the described settings. Restart the device using the
device manager, or simply restart the system.

TDRV002-SW-65 – Windows Device Driver Page 9 of 17

4 Device Driver Programming
The Microsoft® Win32® application programming interface (API) also includes a set of functions that
provide special communication services like reading and setting communication parameter,
transmitting immediate characters, setting timeouts and so on.

All of these standard Win32 communication functions are described in detail in the Windows Platform
SDK Documentation (Windows base services / Communication).

For details refer to the Win32 Programmers Reference of your used programming tools (C++, Visual
Basic etc.)

The Windows name of the first port is \Device\tdrv002_0, of the second port \Device\ tdrv002_1
and so on.

The DOS device name for TDRV002 devices is COM1, COM2, COM3 and so on. If there are other
serial devices in the system the prefix starts with a higher number (see Windows name).

The mapping between Windows device names and DOS device names for TDRV002 devices
can be retrieved from the ‘Advanced Port Settings’.

TDRV002-SW-65 – Windows Device Driver Page 10 of 17

TDRV002 Files and I/O Functions4.1
The following section does not contain a full description of the Win32 functions for interaction with the
TDRV002 device driver. Only the required parameters are described in detail.

4.1.1 Opening a TDRV002 Device
Before you can perform any I/O, the TDRV002 device must be opened by invoking the CreateFile
function. CreateFile returns a handle that can be used to access the TDRV002 device.

On a successful execution of this function the port will be setup with the specified default port settings
(See also 3.1).

HANDLE CreateFile
(

LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile

)

PARAMETERS

lpFileName
This parameter points to a null-terminated string, which specifies the name of the TDRV002 to
open. The lpFileName string should be of the form \\.\COMx to open the device x.

dwDesiredAccess
This parameter specifies the type of access to the TDRV002.
For the TDRV002 this parameter must be set to read-write access (GENERIC_READ |
GENERIC_WRITE)

dwShareMode
Set of bit flags that specify how the object can be shared. Set to 0.

lpSecurityAttributes
This argument is a pointer to a security structure. Set to NULL for TDRV002 devices.

dwCreationDistribution
Specifies the action to take on existing files, and which action to take when files do not exist.
TDRV002 devices must be always opened OPEN_EXISTING.

dwFlagsAndAttributes
Specifies the file attributes and flags for the file. This value must be set to 0 for TDRV002
devices.

hTemplateFile
This value must be NULL for TDRV002 devices.

TDRV002-SW-65 – Windows Device Driver Page 11 of 17

RETURN VALUE

If the function succeeds, the return value is an open handle to the specified TDRV002 device. If the
function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call
GetLastError.

EXAMPLE

HANDLE hDevice;

hDevice = CreateFile(
“\\\\.\\COM5”,
GENERIC_READ | GENERIC_WRITE,
0,
NULL, // no security attrs
OPEN_EXISTING, // TDRV002 device always open existing
0, // no overlapped I/O
NULL);

if (hDevice == INVALID_HANDLE_VALUE)
{

ErrorHandler("Could not open device"); // process error
}

SEE ALSO

CloseHandle(), Win32 documentation CreateFile()

TDRV002-SW-65 – Windows Device Driver Page 12 of 17

4.1.2 Closing a TDRV002 Device
The CloseHandle function closes an open TDRV002 handle.

BOOL CloseHandle
(

HANDLE hDevice;
)

PARAMETERS

hDevice
Identifies an open TDRV002 handle.

RETURN VALUE

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

EXAMPLE

HANDLE hDevice;

if(!CloseHandle(hDevice))
{

ErrorHandler("Could not close device"); // process error
}

SEE ALSO

CreateFile (), Win32 documentation CloseHandle ()

TDRV002-SW-65 – Windows Device Driver Page 13 of 17

4.1.3 TDRV002 Device I/O Control Functions
The DeviceIoControl function sends a control code directly to a specified device driver, causing the
corresponding device to perform the specified operation.

BOOL DeviceIoControl
(

HANDLE hDevice, // handle to device of interest
DWORD dwIoControlCode, // control code of operation to perform
LPVOID lpInBuffer, // pointer to buffer to supply input data
DWORD nInBufferSize, // size of input buffer
LPVOID lpOutBuffer, // pointer to buffer to receive output data
DWORD nOutBufferSize, // size of output buffer
LPDWORD lpBytesReturned, // pointer to variable to receive output byte count
LPOVERLAPPED lpOverlapped // pointer to overlapped structure for asynchronous

// operation
)

PARAMETERS

hDevice
Handle to the TDRV002 that is to perform the operation.

dwIoControlCode
Specifies the control code for the operation. This value identifies the specific operation to be
performed. The following values are defined in tdrv002.h:

Value Meaning
IOCTL_TDRV002_CONF_TRANS Setup programmable interfaces
other Other functions for serial drivers are supported by

this driver. Please refer to the Microsoft
documentation for serial drivers.

See below for more detailed information on each control code.

To use these TDRV002 specific control codes, the header file tdrv002.h must be included in the
application

lpInBuffer
Pointer to a buffer that contains the data required to perform the operation.

nInBufferSize
Specifies the size of the buffer pointed to by lpInBuffer.

lpOutBuffer
Pointer to a buffer that receives the operation’s output data.

nOutBufferSize
Specifies the size of the buffer in bytes pointed to by lpOutBuffer.

TDRV002-SW-65 – Windows Device Driver Page 14 of 17

lpBytesReturned
Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to
by lpOutBuffer. A valid pointer is required.

lpOverlapped
Pointer to an overlapped structure. Overlapped access is not supported.

RETURN VALUE

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV002-SW-65 – Windows Device Driver Page 15 of 17

4.1.3.1 IOCTL_TDRV002_CONF_TRANS
This function is used for TDRV002 supported modules with programmable I/O interfaces.

The new configuration value is passed in an unsigned char buffer, pointed to by lpInBuffer, to the
driver. The buffer must be always an unsigned char type. The argument nInBufferSize specifies the
size (sizeof(UCHAR)) of the configuration buffer.

The configuration value is an ORed value of the following bits. For a description of the bits, please
refer to the Hardware User Manual (Channel Setup) of the module.

Bit No. Name in HW User Manual
0 RS485/RS232#
1 HDPLX
2 RENA
3 RTERM
4 TTERM
5 SLEW LIMIT
6 SHDN
7 Auto RS485 Operation

EXAMPLE

#include <windows.h>
#include <winioctl.h>
#include “tdrv002.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
UCHAR IntfConfig;

IntfConfig = 0x00; // RS232

success = DeviceIoControl(
hDevice, // TDRV002 handle
IOCTL_TDRV002_CONF_TRANS, // control code
&IntfConfig,
sizeof(IntfConfig),
NULL,
0,
&NumBytes,
NULL); // not overlapped

…

TDRV002-SW-65 – Windows Device Driver Page 16 of 17

…

if(success)
{

printf("Output port successfully written\n");
}
else
{

ErrorHandler ("Device I/O control error”); // process error
}

ERROR CODES

Error Code Description
ERROR_INVALID_PARAMETER This function is not supported for the module type.

All other returned error codes are system error conditions.

SEE ALSO

TDRV002 Hardware User Manual

TDRV002-SW-65 – Windows Device Driver Page 17 of 17

5 Known Problems
Order of Serial Ports5.1

The order of the Serial Ports shown in the Devices Manager may not match channel numbering on the
board. Also the assignment of COM Port numbers may not match the local channel numbers, and also
not match the order shown in the device manager.

Fixing COM Port assignment can be done as described in chapter 3.2 Advanced Port Settings. The
local channel number is shown as ‘Path’ by the device properties.

Stopping and restarting devices by the Device Manager or system restarts will not touch the port
assignment.

COM Port Assignment on Higher Port Numbers5.2
If the COM Port assignment does not start with first unused COM Port or the assignment shows gaps
in the COM Port assignment, e.g. the four COM ports of a TPMC466 are assigned to COM7 up to
COM10, instead of COM3 up to COM6 as expected, this may be caused by problems when
uninstalling devices and drivers. This assignment can be corrected in two steps.

1. Check and remove hidden and no more needed COM devices, if any are found. Therefore it
may be necessary to enable hidden devices shown in the device manager. This can be
enabled by setting the following Environment Variables:

Devmgr_show_details=1
Devmgr_show_nonpresent_devices=1

2. Use the COM port assignment as described in the 3.2 Advanced Port Settings to assign the
correct COM Port name.

Settings in HyperTerminal5.3
The driver does not support changing settings with HyperTerminal. Other terminal applications will
work fine.

