TEWS &

The Embedded I/O Company TECHNOLOGIES

TDRV003-SW-82

Linux Device Driver
16 (8) Bit Digital 1/0

Version 2.1.x

User Manual

Issue 2.1.3
November 2017
1 TEWS TECHNOLOGIES GmbH
p(?(‘)"{ne!uBtquge Am Bahnhof 7 25469 Halstenbek, Germany
)) 4101 4058 0 Fax: +49 (0) 4101 4058 19
nfo@tews.com www.tews.com
Ehlbeek 15a

30938 Burgwedel)
fon 05139-9980-0 www.powerbridge.de

fax 05139-9980-49 info@powerbridge.de

TEWS <

TECHNOLOGIES

TDRV003-SW-82
Linux Device Driver
16 (8) Bit Digital 1/0
Supported Modules:

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and

$Emgg? complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.
TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.
©2000-2017 by TEWS TECHNOLOGIES GmbH
Issue Description Date
1.0 First Issue August 21, 2000
1.1 Kernel 2.4.4 Support August 23, 2001
1.2 General Revision February 27, 2004
1.3.0 Kernel 2.6 Support March 10, 2005
2.0.0 TPMC680-SW-82 changed to TDRV003-SW-82 August 8, 2006
TPMC671 Support added
File list changed
2.01 New address TEWS LLC August 29, 2006
2.0.2 New file list (config.h added), description of archive extraction September 26, 2007
2.1.0 Description of new output functions added June 12, 2008
2.1.1 Address TEWS LLC removed July 20, 2010
21.2 Layout specific modifications February 11, 2011
2.1.3 File-List modified November 24, 2017

TDRV003-SW-82 —Linux Device Driver

Page 2 of 31

4

TEWS <

TECHNOLOGIES

Table of Contents

INTRODUCGTION.......ciiiiiiiiieeiiiisrssssssssssss s s s s s s sss s nnsssssssssssssesssnnssssssssssssnsnnnnnsssssssssnnns 4
INSTALLATION ... e e e e e e ee e s e e e e e e e e e e e e e e e e e e s e e e s e e e e e s s e neeeeeeseenseeneenennnsnnsnnnnnnnnnnnnnns 5
2.1 Build and install the DeVice DIiVerccociiiiiiiiiiir s ssn s sssanes 5
2.2 Uninstall the DeVice DIiVEr ... s ass s s s snnnnes 6
2.3 Install the Device Driver into a running Kernel...........coo i 6
2.4 Remove the Device Driver from a running Kernel...........iiicnir s 6
2.5 Change Major Device NUMDET ..o s s s 7
10 T L 01 s I 10 8
B 0t o Y o - o 8
B 07 o [X 10
B R T - T 12
B T - 16
B T T o 18
3.5.1 TDRVOO3_IOCWDENABLE ...ttt 20
3.5.2 TDRVOO3_IOCWDDISABLE ...ttt 21
3.5.3 TDRVOO3_IOCWDRESETttiiiiiiiiiie ittt ettt e et e e et e e e e st ee e e snneeeaeans 22
3.54 TDRVOO3_IOCDEBENABLE ..ottt saeee e 23
3.5.5 TDRVOO3_IOCDEBDISABLE ...ttt e e 24
3.5.6 TDRVOO3_IOCGOUTPUTGET ...ccoitiiiieitiiee ettt snaeeee e 25
3.5.7 TDRVOO3_IOCTOUTPUTSETBITS ..ottt snaeee e 26
3.5.8 TDRVOO3_IOCTOUTPUTCLEARBITS ..ot 27
3.5.9 TDRVOO3_IOCSWRITEMASK ...ttt 28
DIAGNOSTIC ... ciiiiiierrseesssss s e s s s ssssssssss s s s s s e e s s s s nnsssssssssssssssnnsssssssssssnnnnnnnnssssssnsnnns 30

TDRV003-SW-82 —Linux Device Driver Page 3 of 31

TEWS <

TECHNOLOGIES

1 Introduction

The TDRV003-SW-82 Linux device driver allows the operation of the TPMC670 family digital /O PMC
conforming to the Linux I/O system specification. This includes a device-independent basic 1/0
interface with open(), close(), read(), write() and ioctl() functions.

Special /O operation that do not fit to the standard 1/0 calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

The TDRV003-SW-82 device driver supports the following features:

Reading digital input value immediately or after a selected event occurs
Writing digital output value

Set and clear single output lines

Watchdog operation

Input hardware debouncing

YVVVYVYVY

The TDRV003-SW-82 device driver supports the modules listed below:

TPMC670 16 (8) Channel Digital 1/0 (PMC)
TPMC671 16 Channel Digital 1/0 (PMC)

In this document all supported modules and devices will be called TDRV003. Specials for
certain devices will be advised.

To get more information about the features and usage of TDRV003 devices it is recommended to read
the manuals listed below.

TPMC670/TPMC671 User Manual

TDRV003-SW-82 —Linux Device Driver Page 4 of 31

2 Installation

TEWS <

TECHNOLOGIES

Following files are located on the distribution media:

Directory path ‘TDRV003-SW-82":

TDRV003-SW-82-SRC.tar.gz
TDRV003-SW-82-2.1.3.pdf
Changelog.txt

Release.txt

GZIP compressed archive with driver source code
PDF copy of this manual

Release history

Release information

The GZIP compressed archive TDRV003-SW-82-SRC.tar.gz contains the following files and

directories:
Directory path “./tdrv003/”:

tdrv003.c
tdrv003def.h
tdrv003.h

Makefile

makenode
include/tpxxxhwdep.c
include/tpxxxhwdep.h
include/tpmodule.c
include/tpmodule.h
include/config.h
example/tdrv003exa.c
example/Makefile
COPYING

TDRVO0O03 device driver source

TDRVO0O03 driver include file

TDRV003 include file for driver and application
Device Driver Makefile

Script for Device Node Creation in File System
Hardware dependent library

Hardware dependent library header file

Driver independent library

Driver independent library header file

Driver independent library header file

Example Application

Makefile for Example Application

Copy of the GNU Public License (GPL)

In order to perform an installation, extract all files of the archive TDRV003-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TDRV003-SW-82-SRC.tar.gz’ will extract the files into

the local directory.

e Login as root and change to the target directory

e Copy tdrv003.h to /usr/include

2.1 Build and install the Device Driver

e Login as root

e Change to the target directory

e To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

e To update the device driver's module dependencies, enter:

depmod -aq

TDRVO003-SW-82 —Linux Device Driver

Page 5 of 31

TEWS <

TECHNOLOGIES

2.2 Uninstall the Device Driver

Login as root
Change to the target directory

To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

2.3 Install the Device Driver into a running Kernel

To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tdrv003drv

After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a device file system (devfs or sysfs with udev) then you have to skip
running the makenode script. Instead of creating device nodes from the script the driver itself
takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TDRV003 module found. The first
TDRV003 module can be accessed with device node /dev/tdrv003 0, the second module with device
node /dev/tdrv003_1, and so on.

The assignment of device nodes to physical TDRV003 modules depends on the search order of the
PCI bus driver.

2.4 Remove the Device Driver from a running Kernel

To remove the device driver from the running kernel login as root and execute the following
command:

modprobe -r tdrv003drv

If your kernel has enabled devfs or sysfs (udev), all /dev/tdrv003_x nodes will be automatically
removed from your file system after this.

Make sure that the driver isn’t opened by any application program. If opened you will get the
response “tdrv003drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe —r again.

TDRV003-SW-82 —Linux Device Driver Page 6 of 31

TEWS <

TECHNOLOGIES

2.5 Change Major Device Number

This paragraph is only for Linux kernels without DEVFS installed. The TDRV003 driver use
dynamic allocation of major device numbers per default. If this isn’t suitable for the application it is
possible to define a major number for the driver.

To change the major number edit the file tdrv003def.h, change the following symbol to appropriate
value and enter make install to create a new driver.

TDRV003_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#define TDRV003 MAJOR 122

Be sure that the desired major number is not used by other drivers. Please check /proc/devices
to see which numbers are free.

Keep in mind that it is necessary to create new device nodes if the major nhumber for the
TDRVO003 driver has changed and the makenode script is not used.

TDRV003-SW-82 —Linux Device Driver Page 7 of 31

31/0 Functions

This chapter describes the interface to the device driver 1/0O system.

3.1 open

NAME
open() opens a file descriptor.
SYNOPSIS

#include <fcntl.h>

int open

(

const char *filename,
int flags

DESCRIPTION

TEWS <

TECHNOLOGIES

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise

OR of the appropriate parameters (using the | operator in C).

See also the GNU C Library documentation for more information about the open function and open

flags.

EXAMPLE

#include <fcntl.h>

int fd;

fd = open(“/dev/tdrv003 07, O RDWR);

if (fd == -1)
{

/* handle error condition */

TDRVO003-SW-82 —Linux Device Driver

Page 8 of 31

TEWS <

TECHNOLOGIES

RETURNS

The normal return value from open is a non-negative integer file descriptor. In case of an error, a
value of —1 is returned. The global variable errno contains the detailed error code.

ERRORS
Error Code Description
ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description — Low-
Level Input/Output.

SEE ALSO

GNU C Library description — Low-Level Input/Output

TDRV003-SW-82 —Linux Device Driver Page 9 of 31

TEWS <

TECHNOLOGIES

3.2 close

NAME

close() closes a file descriptor.

SYNOPSIS

#include <unistd.h>

int close
(

int filedes
)
DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

#include <unistd.h>

int fd;

if (close(fd) !'= 0)
{

/* handle error conditions */

RETURNS

The normal return value from close is 0. In case of an error, a value of —1 is returned. The global
variable errno contains the detailed error code.

TDRV003-SW-82 —Linux Device Driver Page 10 of 31

TEWS <

TECHNOLOGIES

ERRORS
Error Code Description
ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description — Low-
Level Input/Output.

SEE ALSO

GNU C Library description — Low-Level Input/Output

TDRV003-SW-82 —Linux Device Driver Page 11 of 31

3.3 read

TEWS <

TECHNOLOGIES

NAME
read() reads from a device.
SYNOPSIS

#include <sysl/ioctl.h>
#include <tdrv003.h>

ssize_tread

(
int filedes,
void *buffer,
size_t size

)

DESCRIPTION

The read function reads the contents of the input port either immediately or after a specified event has
occurred. Possible events are rising or falling edge, or any of it at a specified input bit, or a pattern
match of masked input bits.

A pointer to the callers read buffer TDRV003 READBUF and the size of this structure are passed by
the parameters buffer and size to the device.

typedef struct

{
unsigned short
unsigned short
unsigned short
unsigned short
unsigned long

value;
mode;
mask;
match;
timeout;

} TDRV003_READBUF, *PTDRV003_READBUF;

value

This parameter receives the contents of the input port. For TPMC670-11/-21 modules only bits
0..7 are relevant. Bit 0 corresponds to the first input line, bit 1 corresponds to the second input

line and so on.

TDRV003-SW-82 —Linux Device Driver Page 12 of 31

TEWS <

TECHNOLOGIES

mode
This parameter specifies the “event” mode for this read request.

Event Description

TDRV003_NOW The driver reads the input port and returns immediately to the
caller. The parameters mask, match and timeout are not relevant
in this mode.

TDRV003_MATCH The driver reads the input port if the masked input bits match to

the specified pattern. The input mask must be specified in the
parameter mask. A 1 value in mask means that the input bit value
“must-match” identically to the corresponding bit in the match
parameter.

TDRV003_HIGH_TR The driver reads the input port if a high-transition at the specified
bit position occurs. A 1 value in mask specifies the bit position of
the input port. If more than one bit position is specified the events
are ORed. That means the read operation is completed if a high-
transition at least at one relevant bit position occurs.

TDRV003_LOW_TR The driver reads the input port if a low-transition at the specified bit
position occurs. A 1 value in mask specifies the bit position of the
input port. If more than one bit position is specified the events are
ORed. That means the read operation is completed if a low-
transition at least at one relevant bit position occurs.

TDRV003_ANY_TR The driver reads the input port if a transition (high or low) at the
specified bit position occurs. A 1 value in mask specifies the bit
position of the input port. If more than one bit position is specified
the events are ORed. That means the read operation is completed
if a transition at least at one relevant bit position occurs.

mask
This parameter specifies a bit mask. A 1 value marks the corresponding bit position as relevant.

match
This parameter specifies a pattern that must match to the contents of the input port. Only the bit
positions specified by mask must compare to the input port.

timeout

This parameter specifies the amount of time (in ticks) the caller is willing to wait for the specified
event to occur. A value of 0 means wait indefinitely.

Remember interrupt latency:

The returned value for all event reads (TDRV0O03_MATCH, TDRV003_HIGH_TR,
TDRVO003_LOW_TR, and TDRV003_ANY_TR) may not return the value of the moment the event
has occurred, because the input value is read in the ISR.

TDRV003_MATCH may miss very short events, because match check is made in the ISR.
Therefore it is recommended not to use this event for fast changing inputs

TDRV003-SW-82 —Linux Device Driver Page 13 of 31

TEWS <

TECHNOLOGIES

EXAMPLE

#include <sys/ioctl.h>
#include <tdrv003.h>

int f£d;
ssize t NumBytes;
TDRV003 READBUF ReadBuf;

/* Read input port immediately without waiting for any event */
ReadBuf.mode = TDRVO03 NOW;

NumBytes = read(fd, &ReadBuf, sizeof (ReadBuf));
if (NumBytes > 0)
{

printf (“Input port = 0x%$x\n”, ReadBuf.value);

else
{
/* handle read error */
}
/* Read the input port after */
/* bits 0, 6 = 0 and bits 1, 7 =1 */
ReadBuf .mode = TDRVO03 MATCH;
ReadBuf.mask = 0x00C3; /* bit 0,1,6,7 are relevant */
ReadBuf.match = 0x0082;
ReadBuf.timeout = 100; /* ticks */

NumBytes = read(fd, &ReadBuf, sizeof (ReadBuf));
if (NumBytes > 0)

{
printf (“Input port = 0x%x\n”, ReadBuf.value);

/* handle read error */

TDRV003-SW-82 —Linux Device Driver Page 14 of 31

TEWS <

TECHNOLOGIES

/* Read the input port after a high-transition at bit 7 occurred */

ReadBuf .mode
ReadBuf .mask

ReadBuf.timeout

= TDRV003 HIGH TR;
=1 << 7; /* high-transition at bit 7 */
= 100; /* ticks */

NumBytes = read(fd, (char*)&ReadBuf, sizeof (ReadBuf));

if (NumBytes > 0)
{

printf (“Input port = 0x%x\n”, ReadBuf.value);

/* handle read error */

RETURNS

On success read returns the size of the structure TDRV003 _READBUF. In case of an error, a value of
—1is returned. The global variable errno contains the detailed error code.

ERRORS
Error Code Description
EINVAL Invalid argument. This error code is returned if the size of the read buffer is
too small.
EFAULT Invalid pointer to the read buffer
EBUSY The maximum number of concurrent read requests has exceeded. Increase
the value of MAX_REQUESTS in tdrv003def.h.
ETIME The allowed time to finish the read request has elapsed.
EINTR Interrupted function call; an asynchronous signal occurred and prevented
completion of the call. When this happens, try the call again.
SEE ALSO

GNU C Library description — Low-Level Input/Output

TDRV003-SW-82 —Linux Device Driver Page 15 of 31

TEWS <

TECHNOLOGIES

3.4 write

write() writes to a device.

SYNOPSIS

#include <unistd.h>

ssize_t write

(
int filedes,
void *buffer,
size t size

)

DESCRIPTION

The write function writes a new output value to the device specified by the descriptor filedes. A pointer
to an unsigned short buffer and the size of an unsigned short variable is passed by the parameters
buffer and size to the device. Bit 0 corresponds to the first output line, bit 1 corresponds to the second
output line and so on.

EXAMPLE

#include <unistd.h>

int fd;

ssize t NumBytes;

unsigned short OutData;

2 S ———————

Set output lines 1, 2, 3, and 12 (bits 0, 1, 2, 11)
All other outputs will be set to O.

OutData = (1 << 11) | (1 << 2) | (1 << 1) | (1L << 0);

NumBytes = write (fd, (char*)&OutData, sizeof (unsigned short));
if (NumBytes > 0)
{

/* Data successful written */

TDRV003-SW-82 —Linux Device Driver Page 16 of 31

TEWS <

TECHNOLOGIES

RETURNS

On success write returns the size of written data (2). In case of an error, a value of —1 is returned. The
global variable errno contains the detailed error code.

ERRORS
Error Code Description
EINVAL Invalid argument. This error code is returned if the size of the write buffer is
too small.
EFAULT Invalid pointer to the write buffer.
EACCES The output register is locked by a watchdog failure. Execute the ioctl function
TDRVO003_IOCWDRESET to reset the watchdog error.
SEE ALSO

GNU C Library description — Low-Level Input/Output

TDRV003-SW-82 —Linux Device Driver Page 17 of 31

TEWS <

TECHNOLOGIES

3.5 ioctl
NAME
ioctl() device control functions
SYNOPSIS

#include <sysl/ioctl.h>
#include <tdrv003.h>

int ioctl

(

int filedes,
int request,
void *argp

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tdrv003.h:

Value Meaning

TDRV003_IOCWDENABLE Enable output watchdog
TDRV003_IOCWDDISABLE Disable output watchdog
TDRV003_IOCWDRESET Reset output watchdog
TDRV003_|IOCDEBENABLE Enable input debouncer function
TDRV003_IOCDEBDISABLE Disable input debouncer function
TDRV003_IOCGOUTPUTGET Read back output value
TDRVO003_IOCTOUTPUTSETBITS Set specific bits of output value
TDRV003_IOCTOUTPUTCLEARBITS Clear specific bits of output value
TDRV003_IOCSWRITEMASK Write output value in conjunction with bitmask

See below for more detailed information on each control code.

To use these TDRV003 specific control codes the header file tdrv003.h must be included in the
application.

TDRV003-SW-82 —Linux Device Driver Page 18 of 31

TEWS <

TECHNOLOGIES

RETURNS

On success, zero is returned. In case of an error, a value of —1 is returned. The global variable errno
contains the detailed error code.

ERRORS
Error Code Description
EINVAL Invalid argument. This error code is returned if the requested ioctl function is

unknown. Please check the argument request.

Other function dependent error codes will be described for each ioctl code separately. Note, the
TDRVO0O03 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TDRV003-SW-82 —Linux Device Driver Page 19 of 31

TEWS <

TECHNOLOGIES

3.5.1 TDRV003_IOCWDENABLE

NAME

TDRV003_IOCWDENABLE - enables output watchdog

DESCRIPTION
This ioctl function enables the output watchdog function of the TDRV003 device after the next write
operation to the device. Please remember if the watchdog is enabled and no write access occurs

within 120 ms all outputs go into the OFF state. To unlock the output register and leave the OFF state
the ioctl function TDRV003_IOCWDRESET must be executed.

The optional argument can be omitted for this ioctl function.

EXAMPLE

#include <sys/ioctl.h>
#include <tdrv003.h>

int fd;

int result;

result = ioctl (fd, TDRVOO3_IOCWDENABLE);
if (result < 0)
{

/* handle ioctl error */

ERRORS

This ioctl function returns no function specific error codes.

SEE ALSO

ioctl man pages

TDRV003-SW-82 —Linux Device Driver Page 20 of 31

TEWS <

TECHNOLOGIES

3.5.2 TDRV003_IOCWDDISABLE

NAME

TDRV003_IOCWDDISABLE - disables output watchdog

DESCRIPTION

This ioctl function disables the output watchdog function of the TDRV003 device.

The optional argument can be omitted for this ioctl function.

EXAMPLE

#include <sys/ioctl.h>
#include <tdrv003.h>

int £d;

int result;

result = ioctl (fd, TDRVOOB_IOCWDDISABLE);
if (result < 0)
{

/* handle ioctl error */

ERRORS

This ioctl function returns no function specific error codes.

SEE ALSO

ioctl man pages

TDRV003-SW-82 —Linux Device Driver Page 21 of 31

TEWS <

TECHNOLOGIES

3.5.3 TDRV003_IOCWDRESET

NAME

TDRV003_IOCWDRESET - resets output watchdog

DESCRIPTION

This ioctl function resets an output watchdog error. If the write function returns the error code EACCES
this ioctl function must be executed to unlock the output register.

The optional argument can be omitted for this ioctl function.

EXAMPLE

#include <sys/ioctl.h>
#include <tdrv003.h>

int £d;

int result;

result = ioctl(fd, TDRVO03 IOCWDRESET) ;
if (result < 0)
{

/* handle ioctl error */

ERRORS

This ioctl function returns no function specific error codes.

SEE ALSO

ioctl man pages

TDRV003-SW-82 —Linux Device Driver Page 22 of 31

TEWS <

TECHNOLOGIES

3.5.4 TDRV003_IOCDEBENABLE

NAME

TDRV003_IOCDEBENABLE - enables input debouncer function.

DESCRIPTION

This ioctl function enables the input debouncer function. The argument argp passes the new
debouncer counter value to the driver.

Please refer to the corresponding TDRV003 device hardware user manual for calculation formulas for
appropriate counter values.
EXAMPLE

#include <sys/ioctl.h>
#include <tdrv003.h>

int fd;

int result;

/* Enable the debouncer with a debounce time of ~lms */

result = ioctl(fd, TDRV003 IOCDEBENABLE , (unsigned short)147);
if (result < 0)

{

/* handle ioctl error */

ERRORS

This ioctl function returns no function specific error codes.

SEE ALSO

ioctl man pages

TDRV003-SW-82 —Linux Device Driver Page 23 of 31

TEWS <

TECHNOLOGIES

3.5.5 TDRV003_IOCDEBDISABLE

NAME

TDRVO003_|IOCDEBDISABLE - disables input debouncer function.

DESCRIPTION

This ioctl function disables the input debouncer function.

The optional argument can be omitted for this ioctl function.

EXAMPLE

#include <sys/ioctl.h>
#include <tdrv003.h>

int £d;

int result;

result = ioctl (fd, TDRVOOB_IOCDEBDISABLE);
if (result < 0)
{

/* handle ioctl error */

ERRORS

This ioctl function returns no function specific error codes.

SEE ALSO

ioctl man pages

TDRV003-SW-82 —Linux Device Driver Page 24 of 31

TEWS <

TECHNOLOGIES

3.5.6 TDRV003_IOCGOUTPUTGET

NAME

TDRVO003_IOCGOUTPUTGET — Read back output value

DESCRIPTION

This ioctl function reads back the current output value. The function specific control parameter argp is
a pointer to an unsigned short value. Bit 0 corresponds to the first output line, bit 1 corresponds to the
second output line and so on.

EXAMPLE

#include “tdrv003.h”

int fd;

unsigned short OutputState;

int retval;
2 EE—————

retval = ioctl(fd, TDRV003 IOCGOUTPUTGET, (int) &OutputState);
if (retval >= 0)
{
printf (“Current output state: %$X\n”, OutputState);
} else {

/* handle the error */

ERROR CODES
Error Code Description
EFAULT Parameter data can not be copied to or from the driver's context. Please

check the argument argp.

TDRV003-SW-82 —Linux Device Driver Page 25 of 31

TEWS <

TECHNOLOGIES

3.5.7 TDRVO003_IOCTOUTPUTSETBITS

NAME

TDRVO003_IOCTOUTPUTSETBITS — Set specific bits of output value

DESCRIPTION

This ioctl function sets some bits of the output value (set to 1). The function specific control parameter
argp is a pointer to an unsigned short value. Bit 0 corresponds to the first output line, bit 1
corresponds to the second output line and so on. Unset bits will be left unchanged for the output.

EXAMPLE

#include “tdrv003.h”

int f£d;

unsigned short OutputBits;

int retval;

/* ___

Set output lines 2, 3, and 16 (bits 1, 2 and 15)

OutputBits = (1 << 15) | (1 << 2) | (1 << 1);

retval = ioctl(fd, TDRV0O03 IOCTOUTPUTSETBITS, (int) &OutputBits);
if (retval < 0)

{

/* handle the error */

ERROR CODES
Error Code Description
EFAULT Parameter data can not be copied to or from the driver's context. Please
check the argument argp.
EACCES The output register is locked by a watchdog failure. Execute the ioctl function
TDRV003_IOCWDRESET to reset the watchdog error.

TDRV003-SW-82 —Linux Device Driver Page 26 of 31

TEWS <

TECHNOLOGIES

3.5.8 TDRV003_IOCTOUTPUTCLEARBITS

NAME

TDRVO003_IOCTOUTPUTCLEARBITS — Clear specific bits of output value

DESCRIPTION

This ioctl function clears some bits of the output value (set to 0). The function specific control
parameter argp is a pointer to an unsigned short value. Bit 0 corresponds to the first output line, bit 1
corresponds to the second output line and so on. Unset bits will be left unchanged for the output.

EXAMPLE

#include “tdrv003.h”

int

unsigned short

int

f£d;
OutputBits;
retval;

Clear output lines 1 and 16 (bits 0 and 15)

(1 << 15) | (1 << 0);
retval = ioctl (fd,
if (retval < 0)

OutputBits

{

TDRV003 IOCTOUTPUTCLEARBITS, (int) &OutputBits);

/* handle the error */

ERROR CODES
Error Code Description
EFAULT Parameter data can not be copied to or from the driver's context. Please
check the argument argp.
EACCES The output register is locked by a watchdog failure. Execute the ioctl function
TDRV003_IOCWDRESET to reset the watchdog error.

TDRV003-SW-82 —Linux Device Driver Page 27 of 31

TEWS <

TECHNOLOGIES

3.5.9 TDRV003_IOCSWRITEMASK

NAME

TDRV003_IOCSWRITEMASK — Write output value in conjunction with bitmask

DESCRIPTION

This ioctl function writes the output value in conjunction with a bitmask. Only specified bits will be
changed. The function specific control parameter argp is a pointer to a TDRV003 WRITEBUF
structure.

typedef struct
{

unsigned short value;
unsigned short mask;
} TDRV003_WRITEBUF;

value

This parameter specifies a 16bit word which reflects the out lines. Bit 0 corresponds to the first
output line, bit 1 corresponds to the seconds output line and so on.

mask

This parameter specifies a 16bit mask. ‘1’ means that the corresponding bit in value will be
updated. ‘O’ bits will be left unchanged. Bit 0 corresponds to the first output line, bit 1
corresponds to the seconds output line and so on.

TDRV003-SW-82 —Linux Device Driver Page 28 of 31

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tdrv003.h”

int £d;

TDRVOOB_WRITEBUF WriteBuf;

int retval;

/* ___

Set output line 1 and 8 (bit 0 and bit 7), and
clear output line 16 (bit 15)

WriteBuf.value = (1 << 7) | (1 << 0);
WriteBuf.mask = (1 << 15) | (1 << 7) | (1 << 0);

retval = ioctl(fd, TDRVO03 IOCSWRITEMASK, (int)&WriteBuf);
if (retval < 0)
{

/* handle the error */

ERROR CODES
Error Code Description
EFAULT Parameter data can not be copied to or from the driver's context. Please
check the argument argp.
EACCES The output register is locked by a watchdog failure. Execute the ioctl function
TDRVO003_IOCWDRESET to reset the watchdog error.

TDRV003-SW-82 —Linux Device Driver Page 29 of 31

TEWS <

TECHNOLOGIES

4 Diagnostic

If the TDRVO03 does not work properly it is helpful to get some status information from the driver
respective the kernel.

The Linux /proc file system provides information about kernel, resources, driver, devices, and so on.
The following screen dumps display information of a correct running TDRVO0O03 driver (see also the
proc man pages). The examples show a system with 1x TPMC670 and 1x TPMC671.

cat /proc/pci

Bus 0, device 10, function O0:

Signal processing controller: PCI device 1498:029f (TEWS Technologies
GmBH) (rev 0).

IRQ 5.
Non-prefetchable 32 bit memory at 0xeb020000 [0xeb02007f].
I/0 at 0xa400 [0xad7f].
I/0 at 0xa800 [0xa80f].
Bus 0, device 12, function O0:

Signal processing controller: PLX Technology, Inc. PCI <-> IOBus Bridge
(rev 1).

IRQ 10.

Non-prefetchable 32 bit memory at 0xeb021000 [0xeb02107f].
I/0 at Oxac00 [Oxac7f].

I/0 at 0xb000 [0xb0O0f].

cat /proc/devices
Character devices:
1 mem
2 pty
3 ttyp
4 ttys
5 cua
6 lp
7 vcs
10 misc
13 input
29 fb
36 netlink
129 ptm

142 pts
162 raw
254 tdrv003drv

TDRV003-SW-82 —Linux Device Driver Page 30 of 31

TEWS <

TECHNOLOGIES

cat /proc

28

o NN = O

10:
11:
12:
14: 1
15:
NMT :
ERR:

cat /proc
0000-001f
0020-003f
0040-005f
0060-006f
0070-007f
0080-008f
00a0-00bf
00c0-00df
00£f0-00ff
01f0-01£7
02f8-02ff
03c0-03df
03f6-03f6
03f8-03ff
0cf8-0cff
9000-9fff :
9000-90ff
a000-a03f
a000-a03f
a400-a47f
a800-a80f
a800-a80f
ac00-ac7f
b000-b00f
b000-b00f
p400-b40f
p800-b81f

/interrupts
CPUO
2100 XT-PIC timer
6 XT-PIC keyboard
0 XT-PIC cascade
8 XT-PIC TDRVO0O03
1 XT-PIC rtc
0 XT-PIC TDRVO003
4648 XT-PIC ethO
223 XT-PIC PS/2 Mouse
2968 XT-PIC 1ide0
0 XT-PIC idel
0
0
/ioports
dmal
picl
timer
keyboard
rtc

dma page reg
pic2

dma?2

fpu

ideO

serial (auto)
vga+

ideO

serial (auto)
PCI confl
PCI Bus #01

PCI device 1002:5964 (ATI Technologies Inc)
Intel Corp. 82557/8/9 [Ethernet Pro 100]

el00

PCI device 1498:029f (TEWS Datentechnik GmBH)
PCI device 1498:029f (TEWS Datentechnik GmBH)

TDRV003

PLX Technology, Inc. PCI <-> IOBus Bridge
PLX Technology, Inc. PCI <-> IOBus Bridge

TDRV003

VIA Technologies, Inc. VT82C586B PIPC Bus Master IDE

VIA Technologies, Inc. USB

TDRV003-SW-82 —Li

nux Device Driver

Page 31 of 31

