
The Embedded I/O Company

TDRV010-SW-82
Linux Device Driver

Isolated 2x CAN Bus

Version 2.0.x

User Manual
Issue 2.0.3

November 2017

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany

Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com www.tews.com

TDRV010-SW-82 – Linux Device Driver Page 2 of 57

TDRV010-SW-82
Linux Device Driver

Isolated 2x CAN Bus

Supported Modules:
TPMC310
TPMC810

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2007-2017 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0.0 First Issue May 9, 2007
1.0.1 Bitrate values corrected March 9, 2009
2.0.0 API functions documented, legacy functions removed March 27, 2013
2.0.1 Engineering Documentation removed February 24, 2014
2.0.2 Startup configuration of Transceiver Mode corrected (TPMC310 only)

Step by Step Driver Initialization modified
July 8, 2015

2.0.3 File-List modified November 15, 2017

TDRV010-SW-82 – Linux Device Driver Page 3 of 57

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

Build and install the Device Driver..62.1
Uninstall the Device Driver ..62.2
Install the Device Driver in the running Kernel..62.3
Remove Device Driver from the running Kernel..72.4
Change Major Device Number ...72.5
Receive Queue Configuration..72.6

3 API DOCUMENTATION ... 8
General Functions...83.1
3.1.1 tdrv010Open ...8
3.1.2 tdrv010Close...10
3.1.3 tdrv010GetModuleInfo ..12
3.1.4 tdrv010GetControllerStatus ..15
Communication Functions...183.2
3.2.1 tdrv010Read ...18
3.2.2 tdrv010Write ...22
Configuration Functions ..263.3
3.3.1 tdrv010SetFilter ..26
3.3.2 tdrv010SetBitTiming ...29
3.3.3 tdrv010Start ..31
3.3.4 tdrv010Stop ..33
3.3.5 tdrv010FlushReceiveFifo..35
3.3.6 tdrv010SelftestEnable...37
3.3.7 tdrv010SelftestDisable..39
3.3.8 tdrv010ListenOnlyEnable ...41
3.3.9 tdrv010ListenOnlyDisable...43
3.3.10 tdrv010SetLimit...45
3.3.11 tdrv010CanReset..47
3.3.12 tdrv010CanSel ..49
3.3.13 tdrv010CanInt ...51
Step by Step Driver Initialization ...533.4

4 DIAGNOSTIC.. 54
5 KNOWN ISSUES.. 57

TDRV010-SW-82 – Linux Device Driver Page 4 of 57

1 Introduction
The TDRV010-SW-82 Linux device driver allows the operation of the TDRV010 2x CAN PMC devices
conforming to the Linux I/O system specification. This includes a device-independent basic I/O
interface with open(), close() and ioctl() functions.

Special I/O operation that do not fit to the standard I/O calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

Supported features:

Transmission and reception of Standard and Extended Identifiers
Standard bit rates from 50 kbit up to 1 Mbit and user defined bit rates
Message acceptance filtering
Single-Shot transmission
Listen only mode
Message self reception
Programmable error warning limit
Creates devices with dynamically allocated or fixed major device numbers
DEVFS and SYSFS (UDEV) support for automatic device node creation

The TDRV010-SW-82 device driver supports the modules listed below:

TPMC310 Isolated 2 x CAN Bus (PMC, Conduction Cooled)
TPMC810 Isolated 2 x CAN Bus (PMC)

In this document all supported modules and devices will be called TDRV010. Specials for
certain devices will be advised.

To get more information about the features and use of TDRV010 devices it is recommended to read
the manuals listed below.

TPMC310, TPMC810 User manual
SJA1000 CAN Controller Manual

TDRV010-SW-82 – Linux Device Driver Page 5 of 57

2 Installation
Following files are located on the distribution media:

Directory path ‘TDRV010-SW-82’:

TDRV010-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
TDRV010-SW-82-2.0.3.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

For installation the files have to be copied to the desired target directory.

The GZIP compressed archive TDRV010-SW-82-SRC.tar.gz contains the following files and
directories:

Directory path ‘tdrv010’:

tdrv010.c Driver source code
tdrv010def.h Driver include file
tdrv010.h Driver include file for application program
sja1000.h Driver include file (CAN Controller Spec.)
Makefile Device driver make file
makenode Script to create device nodes in the file system
COPYING Copy of the GNU Public License (GPL)
api/tdrv010api.h API include file
api/tdrv010api.c API source file
example/tdrv010exa.c Example application
example/Makefile Example application make file
include/tpxxxhwdep.c Hardware dependent library
include/tpxxxhwdep.h Hardware dependent library header file
include/tpmodule.c Driver independent library
include/tpmodule.h Driver independent library header file
include/config.h Driver independent library header file

In order to perform an installation, extract all files of the archive TDRV010-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TDRV010-SW-82-SRC.tar.gz’ will extract the files into
the local directory.

Login as root and change to the target directory

Copy tdrv010.h and api/tdrv010api.h to /usr/include

TDRV010-SW-82 – Linux Device Driver Page 6 of 57

Build and install the Device Driver2.1
Login as root

Change to the target directory

To create and install the driver in the module directory /lib/modules/<version> enter:

make install

Only after the first build we have to execute depmod to create a new dependency description
for loadable kernel modules. This dependency file is later used by modprobe to automatically
load dependent kernel modules.

depmod –aq

Uninstall the Device Driver2.2
Login as root

Change to the target directory

To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

Update kernel module dependency description file

depmod –aq

Install the Device Driver in the running Kernel2.3
To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tdrv010drv

After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a dynamic device file system (devfs or sysfs with udev) then you have to
skip running the makenode script. Instead of creating device nodes from the script the driver
itself takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TDRV010 CAN Channel found. The
first TDRV010 CAN Channel can be accessed with device node /dev/tdrv010_0, the second with
/dev/tdrv010_1, the third with /dev/tdrv010_2 and so on.

The assignment of device nodes to physical TDRV010 modules depends on the search order of the
PCI bus driver. For more details on channel assignment see # cat /proc/tews-tdrv010.

TDRV010-SW-82 – Linux Device Driver Page 7 of 57

Remove Device Driver from the running Kernel2.4
To remove the device driver from the running kernel login as root and execute the following
command:

modprobe tdrv010drv –r

If your kernel has enabled a dynamic device file system like devfs or sysfs (udev), all /dev/tdrv010_x
nodes will be automatically removed from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the response
“tdrv010drv: Device or resource busy” and the driver will still remain in the system until you close all
opened files and execute modprobe –r again.

Change Major Device Number2.5
The TDRV010 driver uses dynamic allocation of major device numbers by default. If this isn’t suitable
for the application it is possible to define a major number for the driver. If the kernel has enabled devfs
the driver will not use the symbol TDRV010_MAJOR.

To change the major number edit the file tdrv010def.h, change the following symbol to an appropriate
value and enter make install to create a new driver.

TDRV010_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#define TDRV010_MAJOR 122

Be sure that the desired major number isn’t used by other drivers. Please check /proc/devices
to see which numbers are free.

Receive Queue Configuration2.6
Received CAN messages will be stored in a FIFO buffer. The depth of the FIFO can be adapted by
changing the following symbol in tdrv010def.h.

TDRV010_RX_FIFO_SIZE Defines the depth of the message FIFO buffer (default = 100). Valid
numbers are in range between 1 and MAXINT.

TDRV010-SW-82 – Linux Device Driver Page 8 of 57

3 API Documentation
General Functions3.1

3.1.1 tdrv010Open

NAME

tdrv010Open – opens a device.

SYNOPSIS

TDRV010_HANDLE tdrv010Open
(

char *DeviceName
)

DESCRIPTION

Before I/O can be performed to a device, a device descriptor must be opened by a call to this function.

PARAMETERS

DeviceName
This parameter points to a null-terminated string that specifies the name of the device. The first
TDRV010 CAN channel device is named “/dev/tdrv010_0” the second channel is named
“/dev/tdrv010_1” and so on.

EXAMPLE

#include “tdrv010api.h”

TDRV010_HANDLE hdl;

/*
** open the specified device
*/
hdl = tdrv010Open(“/dev/tdrv010_0”);
if (hdl == NULL)
{

/* handle open error */
}

TDRV010-SW-82 – Linux Device Driver Page 9 of 57

RETURNS

A device handle, or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TDRV010-SW-82 – Linux Device Driver Page 10 of 57

3.1.2 tdrv010Close

NAME

tdrv010Close – closes a device.

SYNOPSIS

TDRV010_STATUS tdrv010Close
(

TDRV010_HANDLE hdl
)

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;

/*
** close the device
*/
result = tdrv010Close(hdl);
if (result != TDRV010_OK)
{

/* handle close error */
}

TDRV010-SW-82 – Linux Device Driver Page 11 of 57

RETURNS

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid

TDRV010-SW-82 – Linux Device Driver Page 12 of 57

3.1.3 tdrv010GetModuleInfo

NAME

tdrv010GetModuleInfo – get information of the module

SYNOPSIS

TDRV010_STATUS tdrv010GetModuleInfo
(

TDRV010_HANDLE hdl,
unsigned int *pModuleType,
unsigned int *pChannelNo,
TDRV010_PCIINFO_BUF *pPciInfoBuf

)

DESCRIPTION

This function returns information about the module, including module type, local channel number and
PCI header as well as the PCI localization.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pModuleType
This argument is a pointer to an unsigned int (32bit) data buffer, where the module type is
returned. Possible values are:
Value Description
TDRV010_MODTYPE_TPMC310 Current module is a TPMC310
TDRV010_MODTYPE_TPMC810 Current module is a TPMC810

pChannelNo
This argument is a pointer to an unsigned int (32bit) data buffer, where the local channel
number of the device is returned. Possible values are 0 or 1.

TDRV010-SW-82 – Linux Device Driver Page 13 of 57

pPciInfoBuf
This argument is a pointer to the structure TDRV010_PCIINFO_BUF that receives information
of the module PCI header.

typedef struct
{

unsigned short vendorId;
unsigned short deviceId;
unsigned short subSystemId;
unsigned short subSystemVendorId;
int pciBusNo;
int pciDevNo;
int pciFuncNo;

} TDRV010_PCIINFO_BUF;

vendorId
PCI module vendor ID.

deviceId
PCI module device ID

subSystemId
PCI module sub system ID

subSystemVendorId
PCI module sub system vendor ID

pciBusNo
Number of the PCI bus, where the module resides.

pciDevNo
PCI device number

pciFuncNo
PCI function number

TDRV010-SW-82 – Linux Device Driver Page 14 of 57

EXAMPLE

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;
unsigned int moduleType;
unsigned int channelNo;
TDRV010_PCIINFO_BUF pciInfoBuf

/*
** get module information
*/
result = tdrv010GetModuleInfo(hdl, &moduleType, &channelNo, &pciInfoBuf);

if (result != TDRV010_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid
TDRV010_ERR_INVAL Specified pointer is invalid.

TDRV010-SW-82 – Linux Device Driver Page 15 of 57

3.1.4 tdrv010GetControllerStatus

Name

tdrv010GetControllerStatus – Get CAN controller status information

Synopsis

TDRV010_STATUS tdrv010GetControllerStatus
(

TDRV010_HANDLE hdl,
TDRV010_STATUS_BUF *pCANStatus

)

Description

This function returns the actual contents of several CAN controller registers for diagnostic purposes.

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pCANStatus
This parameter points to a TDRV010_STATUS_BUF buffer, which receives the CAN controller
status:

typedef struct
{

unsigned char ArbitrationLostCapture;
unsigned char ErrorCodeCapture;
unsigned char TxErrorCounter;
unsigned char RxErrorCounter;
unsigned char ErrorWarningLimit;
unsigned char StatusRegister;
unsigned char ModeRegister;
unsigned char RxMessageCounterMax;
unsigned char PLDControl;

} TDRV010_STATUS_BUF;

ArbitrationLostCapture
Contents of the arbitration lost capture register. This register contains information about
the bit position of losing arbitration.

TDRV010-SW-82 – Linux Device Driver Page 16 of 57

ErrorCodeCapture
Contents of the error code capture register. This register contains information about the
type and location of errors on the bus.

TxErrorCounter
Contents of the TX error counter register. This register contains the current value of the
transmit error counter.

RxErrorCounter
Contents of the RX error counter register. This register contains the current value of the
receive error counter.

ErrorWarningLimit
Contents of the error warning limit register.

StatusRegister
Contents of the status register.

ModeRegister
Contents of the mode register.

RxMessageCounterMax
Contains the peak value of messages in the software receive FIFO. This internal counter
value will be reset to 0 after reading.

PLDControl
If it’s available this parameter retrieves the content of the PLD Control Register. For non
TPMC310 modules this parameter retrieves a value greater or equal 0x80 (means
invalid). On TPMC310 devices the retrieved value will describe exactly the content of
PLDControlReg[5:0].

TDRV010-SW-82 – Linux Device Driver Page 17 of 57

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;
TDRV010_STATUS_BUF CanStatus;

result = tdrv010GetControllerStatus(hdl, &CanStatus);
if (result != TDRV010_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.

SEE ALSO

SJA1000 Product Specification Manual

TDRV010-SW-82 – Linux Device Driver Page 18 of 57

Communication Functions3.2

3.2.1 tdrv010Read

Name

tdrv010Read – Read a CAN message

Synopsis

TDRV010_STATUS tdrv010Read
(

TDRV010_HANDLE hdl,
int Timeout,
unsigned int *pIdentifier,
unsigned char *pIOFlags,
unsigned char *pStatus,
int *pLength,
unsigned char *pData

)

Description

This function reads a CAN message from the device driver receive queue. If no data is available, the
function blocks until data is received or the specified timeout has expired.

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

Timeout
This parameter specifies the maximum time (in milliseconds) the function will block and wait for
data if no data is available. Specify -1 to wait indefinitely, or 0 to return immediately.

pIdentifier
This parameter is a pointer to an unsigned int (32bit) value where the CAN message identifier is
stored.

TDRV010-SW-82 – Linux Device Driver Page 19 of 57

pIOFlags
This parameter is a pointer to an unsigned char (8bit) value where CAN message attributes are
stored as a set of bit flags. The following attribute flags are possible:

Value Description
TDRV010_EXTENDED Set if the received message is an extended message

frame. Reset for standard message frames.
TDRV010_REMOTE_FRAME Set if the received message is a remote transmission

request (RTR) frame.

pStatus
This parameter is a pointer to an unsigned char (8bit) value where status information about
overrun conditions either in the CAN controller or intermediate software FIFO is stored. The
following values are possible:

Value Description
TDRV010_SUCCESS No messages lost
TDRV010_FIFO_OVERRUN One or more messages ware overwritten in the receive

queue FIFO. This problem occurs if the FIFO is too small
for the application read interval.

TDRV010_MSGOBJ_OVERRUN One or more messages were overwritten in the CAN
controller message FIFO because the interrupt latency is
too large. Reduce the CAN bit rate or upgrade the
system speed.

pLength
This parameter is a pointer to an int value where the length of the received CAN message
(number of bytes) is stored. Possible values are 0..8.

pData
This parameter is a pointer to an unsigned char array where the received CAN message is
stored. This buffer receives up to 8 data bytes. pData[0] receives message Data 0, pData[1]
receives message Data 1 and so on.

TDRV010-SW-82 – Linux Device Driver Page 20 of 57

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;
int Timeout;
unsigned int Identifier;
unsigned char IOFlags;
unsigned char Status;
int Length;
unsigned char Data[8];

/*
** Read a CAN message from the device.
** If no data is available, wait 5000ms for incoming messages.
*/
Timeout = 5000;
result = tdrv010Read(hdl,

Timeout,
&Identifier,
&IOFlags,
&Status,
&Length,
&Data[0]);

if (result != TDRV010_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

TDRV010-SW-82 – Linux Device Driver Page 21 of 57

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.
TDRV010_ERR_TIMEOUT Read was blocked and the allowed time has elapsed.
TDRV010_ERR_BUSOFF The controller is in bus OFF state and no message is

available in the receive queue.
Note, as long as CAN messages are available in the
receive queue FIFO, bus OFF conditions were not
reported by the read function. This means you can
read all CAN messages out of the receive queue
FIFO during bus OFF state without an error result.

TDRV010-SW-82 – Linux Device Driver Page 22 of 57

3.2.2 tdrv010Write

Name

tdrv010Write – Write a CAN message

Synopsis

TDRV010_STATUS tdrv010Write
(

TDRV010_HANDLE hdl,
int Timeout,
unsigned int Identifier,
unsigned char IOFlags,
int Length,
unsigned char *pData

)

Description

This function writes a CAN message to the CAN bus. The function waits for the message to be sent
until the specified timeout has expired.

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

Timeout
Specifies the amount of time (in milliseconds) the caller is willing to wait for execution of write
request. A value of -1 means wait indefinitely. If Timeout is set to 0 the function will return
immediately after initiating the write in the CAN controller.

Identifier
Contains the message identifier of the CAN message to write.

TDRV010-SW-82 – Linux Device Driver Page 23 of 57

IOFlags
Contains a set of bit flags, which define message attributes and controls the write operation. To
set more than one bit flag the predefined macros must be binary OR’ed.
Value Description
TDRV010_EXTENDED Transmit an extended message frame. If this macro isn't set

or the "dummy" macro TDRV010_STANDARD is set a
standard frame will be transmitted.

TDRV010_REMOTE_FRAME A remote transmission request (RTR bit is set) will be
transmitted.

TDRV010_SINGLE_SHOT No re-transmission will be performed if an error occurred or
the arbitration will be lost during transmission (single-shot
transmission).

TDRV010_SELF_RECEPTION The message will be transmitted and simultaneously
received if the acceptance filter is set to the corresponding
identifier.

Length
Contains the number of message data bytes (0...8).

pData
This buffer contains up to 8 data bytes. pData[0] contains message Data 0, pData[1] contains
message Data 1 and so on.

TDRV010-SW-82 – Linux Device Driver Page 24 of 57

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;
int Timeout;
unsigned int Identifier;
unsigned char IOFlags;
int Length;
unsigned char Data[8];

/*
** Write an extended CAN message to the device.
*/
Identifier = 1234;
Timeout = 5000;
IOFlags = TDRV010_EXTENDED | TDRV010_SINGLE_SHOT;
MsgLen = 2;
Data[0] = 0xaa;
Data[1] = 0x55;

result = tdrv010Write(hdl,
Timeout,
Identifier,
IOFlags,
Length,
&Data[0]);

if (result != TDRV010_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

TDRV010-SW-82 – Linux Device Driver Page 25 of 57

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.
TDRV010_ERR_TIMEOUT The allowed time to finish the write request is

elapsed.
TDRV010_ERR_BUSOFF The controller is in bus OFF state and unable to

transmit messages.
TDRV010_ERR_INVAL Illegal message length (valid range is 0...8).

TDRV010-SW-82 – Linux Device Driver Page 26 of 57

Configuration Functions3.3

3.3.1 tdrv010SetFilter

Name

tdrv010SetFilter – Configure Acceptance Filter

Synopsis

TDRV010_STATUS tdrv010SetFilter
(

TDRV010_HANDLE hdl,
int SingleFilter,
unsigned int AcceptanceCode,
unsigned int AcceptanceMask

)

Description

This function modifies the acceptance filter of the specified CAN controller device.

The acceptance filter compares the received identifier with the acceptance filter and decides whether
a message should be accepted or not. If a message passes the acceptance filter it is stored in the
receive FIFO.

The acceptance filter is defined by the acceptance code registers and the acceptance mask registers.
The bit patterns of messages to be received are defined in the acceptance code register.

The corresponding acceptance mask registers allow defining certain bit positions to be "don't care" (a
1 at a bit position means "don't care").

A detailed description of the acceptance filter and possible filter modes can be found in the
SJA1000 Product Specification Manual.

This function will be accepted only in reset mode (BUSOFF). Use function tdrv010Stop() first.

TDRV010-SW-82 – Linux Device Driver Page 27 of 57

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

SingleFilter
Set TRUE (1) for single filter mode.
Set FALSE (0) for dual filter mode.

AcceptanceCode
The contents of this parameter will be written to acceptance code register of the controller.

AcceptanceMask
The contents of this parameter will be written to the acceptance mask register of the controller.

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;
int SingleFilter;
unsigned int AcceptanceCode;
unsigned int AcceptanceMask;

/* Not relevant because all bits are "don't care" */
AcceptanceCode = 0x0;

/* Mark all bit position don't care */
AcceptanceMask = 0xffffffff;

/* Single Filter Mode */
SingleFilter = 1;

result = tdrv010SetFilter(hdl,
SingleFilter,
AcceptanceCode,
AcceptanceMask);

if (result != TDRV010_OK)
{

/* handle error */
}

TDRV010-SW-82 – Linux Device Driver Page 28 of 57

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.
TDRV010_ERR_ACCESS Permission denied. The controller is currently in BUS

ON state. Please enter the BUS OFF state before
changing the acceptance filter.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.15 ACCEPTANCE FILTER

TDRV010-SW-82 – Linux Device Driver Page 29 of 57

3.3.2 tdrv010SetBitTiming

Name

tdrv010SetBitTiming – Modify CAN Bus transfer speed

Synopsis

TDRV010_STATUS tdrv010SetBitTiming
(

TDRV010_HANDLE hdl,
unsigned short TimingValue,
int UseThreeSamples

)

Description

This function modifies the bit timing registers of the CAN controller to setup a new CAN bus transfer
speed.

Use one sample point for faster bit rates and three sample points for slower bit rates to make
the CAN bus more immune against noise spikes.

This function will be accepted only in reset mode (BUSOFF). Use function tdrv010Stop() first.

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

TimingValue
This parameter holds the new value for the bit timing register 0 (bit 0...7) and for the bit timing
register 1 (bit 8...15). Possible transfer rates are between 50 Kbit per second and 1 Mbit per
second. The include file 'tdrv010api.h' contains predefined transfer rate symbols
(TDRV010_50KBIT ... TDRV010_1MBIT).
For other transfer rates please follow the instructions of the SJA1000 Product Specification,
which is also part of the TPMC310 or TPMC810 engineering documentation.

UseThreeSamples
If this parameter is TRUE (1) the CAN bus is sampled three times per bit time instead of one.

TDRV010-SW-82 – Linux Device Driver Page 30 of 57

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;
int UseThreeSamples;
unsigned short TimingValue;

TimingValue = TDRV010_100KBIT;
UseThreeSamples = FALSE;

result = tdrv010SetBitTiming(hdl,
TimingValue,
UseThreeSamples);

if (result != TDRV010_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.
TDRV010_ERR_ACCESS Permission denied. The controller is currently in BUS

ON state. Please enter the BUS OFF state before
changing the bit timing.

SEE ALSO

tdrv010exa.c for a programming example.

tdrv010api.h for predefined bus timing constants.

SJA1000 Product Specification Manual – 6.5.1/2 BUS TIMING REGISTER.

TDRV010-SW-82 – Linux Device Driver Page 31 of 57

3.3.3 tdrv010Start

Name

tdrv010Start – Set CAN controller into BUSON state

Synopsis

TDRV010_STATUS tdrv010Start
(

TDRV010_HANDLE hdl
)

Description

This function sets the specified CAN controller into the BUSON state.

After an abnormal rate of occurrences of errors on the CAN bus or after driver startup, the CAN
controller enters the BUSOFF state. This control function resets the "reset mode" bit in the mode
register. The CAN controller begins the bus OFF recovery sequence and resets transmit and receive
error counters. If the CAN controller counts 128 packets of 11 consecutive recessive bits on the CAN
bus, the Bus Off state is exited.

Before the driver is able to communicate over the CAN bus after driver startup, this control
function must be executed.

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;

result = tdrv010Start(hdl);
if (result != TDRV010_OK)
{

/* handle error */
}

TDRV010-SW-82 – Linux Device Driver Page 32 of 57

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.
TDRV010_ERR_BUSOFF Unable to enter the Bus ON mode.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD).

TDRV010-SW-82 – Linux Device Driver Page 33 of 57

3.3.4 tdrv010Stop

Name

tdrv010Stop – Set CAN controller into BUSOFF state

Synopsis

TDRV010_STATUS tdrv010Stop
(

TDRV010_HANDLE hdl
)

Description

This function sets the specified CAN controller into the bus OFF state.

After execution of this control function the CAN controller is completely removed from the CAN bus
and cannot communicate until the control function tdrv010Start() is executed.

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;

result = tdrv010Stop(hdl);
if (result != TDRV010_OK)
{

/* handle error */
}

TDRV010-SW-82 – Linux Device Driver Page 34 of 57

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.
TDRV010_ERR_IO Unable to enter the Bus OFF mode.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD).

TDRV010-SW-82 – Linux Device Driver Page 35 of 57

3.3.5 tdrv010FlushReceiveFifo

Name

tdrv010FlushReceiveFifo – Flush software receive FIFO

Synopsis

TDRV010_STATUS tdrv010FlushReceiveFifo
(

TDRV010_HANDLE hdl
)

Description

This function flushes the software FIFO buffer of received CAN messages.

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;

result = tdrv010FlushReceiveFifo(hdl);
if (result != TDRV010_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

TDRV010-SW-82 – Linux Device Driver Page 36 of 57

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.

TDRV010-SW-82 – Linux Device Driver Page 37 of 57

3.3.6 tdrv010SelftestEnable

Name

tdrv010SelftestEnable – Enable self test facility

Synopsis

TDRV010_STATUS tdrv010SelftestEnable
(

TDRV010_HANDLE hdl
)

Description

This function enables the self test facility of the SJA1000 CAN controller.

In this mode a full node test is possible without any other active node on the bus using the self
reception facility. The CAN controller will perform a successful transmission even if there is no
acknowledge received.

Also in self test mode the normal functionality is given, that means the CAN controller is able to
receive messages from other nodes and can transmit message to other nodes if any connected.

This function will be accepted only in reset mode (BUSOFF). Use function tdrv010Stop() first.

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

TDRV010-SW-82 – Linux Device Driver Page 38 of 57

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;

result = tdrv010SelftestEnable(hdl);
if (result != TDRV010_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.
TDRV010_ERR_ACCESS Permission denied. The controller is currently in BUS

ON state. Please enter the BUS OFF state first.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-82 – Linux Device Driver Page 39 of 57

3.3.7 tdrv010SelftestDisable

Name

tdrv010SelftestDisable – Disable self test facility

Synopsis

TDRV010_STATUS tdrv010SelftestDisable
(

TDRV010_HANDLE hdl
)

Description

This function disables the self test facility of the SJA1000 CAN controller, which was enabled before
with the function tdrv010SelftestEnable().

This function will be accepted only in reset mode (BUSOFF). Use function tdrv010Stop() first.

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;

result = tdrv010SelftestDisable(hdl);
if (result != TDRV010_OK)
{

/* handle error */
}

TDRV010-SW-82 – Linux Device Driver Page 40 of 57

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.
TDRV010_ERR_ACCESS Permission denied. The controller is currently in BUS

ON state. Please enter the BUS OFF state first.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-82 – Linux Device Driver Page 41 of 57

3.3.8 tdrv010ListenOnlyEnable

Name

tdrv010ListenOnlyEnable – Enable listen-only facility

Synopsis

TDRV010_STATUS tdrv010ListenOnlyEnable
(

TDRV010_HANDLE hdl
)

Description

This function enables the listen only facility of the SJA1000 CAN controller.

In this mode the CAN controller would give no acknowledge to the CAN-bus, even if a message is
received successfully. Message transmission is not possible. All other functions can be used like in
normal mode.

This mode can be used for software driver bit rate detection and 'hot-plugging'.

This function will be accepted only in reset mode (BUSOFF). Use function tdrv010Stop() first.

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;

result = tdrv010ListenOnlyEnable(hdl);
if (result != TDRV010_OK)
{

/* handle error */
}

TDRV010-SW-82 – Linux Device Driver Page 42 of 57

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.
TDRV010_ERR_ACCESS Permission denied. The controller is currently in BUS

ON state. Please enter the BUS OFF state first.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-82 – Linux Device Driver Page 43 of 57

3.3.9 tdrv010ListenOnlyDisable

Name

tdrv010ListenOnlyDisable – Disable listen-only facility

Synopsis

TDRV010_STATUS tdrv010ListenOnlyDisable
(

TDRV010_HANDLE hdl
)

Description

This function disables the self test facility of the SJA1000 CAN controller, which was enabled before
with the function FIO_TDRV010_ENABLE_SELFTEST.

This function will be accepted only in reset mode (BUSOFF). Use function tdrv010Stop() first.

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;

result = tdrv010ListenOnlyDisable(hdl);
if (result != TDRV010_OK)
{

/* handle error */
}

TDRV010-SW-82 – Linux Device Driver Page 44 of 57

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.
TDRV010_ERR_ACCESS Permission denied. The controller is currently in BUS

ON state. Please enter the BUS OFF state first.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-82 – Linux Device Driver Page 45 of 57

3.3.10 tdrv010SetLimit

Name

tdrv010SetLimit – Disable listen-only facility

Synopsis

TDRV010_STATUS tdrv010SetLimit
(

TDRV010_HANDLE hdl,
unsigned char ErrorLimit

)

Description

This function sets a new error warning limit in the corresponding CAN controller register. The default
value (after hardware reset) is 96.

This function will be accepted only in reset mode (BUSOFF). Use function tdrv010Stop() first.

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

ErrorLimit
This parameter specifies the new error warning limit.

TDRV010-SW-82 – Linux Device Driver Page 46 of 57

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;

/*
** Set Error Warning Limit to 20
*/
result = tdrv010SetLimit(hdl, 20);
if (result != TDRV010_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.
TDRV010_ERR_ACCESS Permission denied. The controller is currently in BUS

ON state. Please enter the BUS OFF state first.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.10 ERROR WARNING LIMIT REGISTER (EWLR)

TDRV010-SW-82 – Linux Device Driver Page 47 of 57

3.3.11 tdrv010CanReset

Name

tdrv010CanReset – Set CAN controller into reset or operating mode

Synopsis

TDRV010_STATUS tdrv010CanReset
(

TDRV010_HANDLE hdl,
unsigned char CanReset

)

Description

This function sets the certain CAN controller in reset or operating mode. After driver startup, the CAN
controllers are configured to operating mode.

This function is only available for TPMC310 devices.

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

CanReset
This parameter specifies the controller operating mode.
Value Description
TDRV010_CANRESET_RESET Set the certain CAN channel into reset mode
TDRV010_CANRESET_OPERATING Set the certain CAN channel into operating mode

TDRV010-SW-82 – Linux Device Driver Page 48 of 57

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;

/*
** Set Controller into operating mode
*/
result = tdrv010CanReset(hdl, TDRV010_CANRESET_OPERATING);
if (result != TDRV010_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.
TDRV010_ERR_NOTSUP Function not supported by the device.

SEE ALSO

TPMC310 User Manual

TDRV010-SW-82 – Linux Device Driver Page 49 of 57

3.3.12 tdrv010CanSel

Name

tdrv010CanSel – Set CAN transceiver into silent or operating mode

Synopsis

TDRV010_STATUS tdrv010CanSel
(

TDRV010_HANDLE hdl,
unsigned char CanSel

)

Description

This function sets the certain CAN transceivers into silent or operating mode. After driver startup, the
CAN transceivers are configured to silent mode.

Before communication is possible, the transceivers must be set to operating mode.

This function is only available for TPMC310 devices.

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

CanSel
This parameter specifies the controller operating mode.
Value Description
TDRV010_CANSEL_SILENT Set the certain CAN channel into silent mode
TDRV010_CANSEL_OPERATING Set the certain CAN channel into operating mode

TDRV010-SW-82 – Linux Device Driver Page 50 of 57

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;

/*
** Set Transceiver into operating mode
*/
result = tdrv010CanSel(hdl, TDRV010_CANSEL_OPERATING);
if (result != TDRV010_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.
TDRV010_ERR_NOTSUP Function not supported by the device.

SEE ALSO

TPMC310 User Manual

TDRV010-SW-82 – Linux Device Driver Page 51 of 57

3.3.13 tdrv010CanInt

Name

tdrv010CanInt – Enable or disable CAN controller interrupts

Synopsis

TDRV010_STATUS tdrv010CanInt
(

TDRV010_HANDLE hdl,
unsigned char CanInt

)

Description

This function enables or disables certain CAN controller interrupts. After driver startup, the CAN
controller interrupts are enabled.

This function is only available for TPMC310 devices.

Parameters

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

CanInt
This parameter specifies the controller operating mode.
Value Description
TDRV010_CANINT_ENABLE Enable interrupt of a certain CAN channel
TDRV010_CANINT_DISABLE Disable interrupt of a certain CAN channel

TDRV010-SW-82 – Linux Device Driver Page 52 of 57

Example

#include “tdrv010api.h”

TDRV010_HANDLE hdl;
TDRV010_STATUS result;

/*
** Enable CAN controller interrupts
*/
result = tdrv010CanInt(hdl, TDRV010_CANINT_ENABLE);
if (result != TDRV010_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV010_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV010_ERR_INVALID_HANDLE The specified device handle is invalid.
TDRV010_ERR_NOTSUP Function not supported by device.

SEE ALSO

TPMC310 User Manual

TDRV010-SW-82 – Linux Device Driver Page 53 of 57

Step by Step Driver Initialization3.4
The following code example illustrates all necessary steps to initialize a CAN device for
communication.

/*
** (0.) Set Transceivers to “Operating Mode”
** (required for TPMC310 only)
*/
result = tdrv010CanSel(hdl, TDRV010_CANSEL_OPERATING);

/*
** (1.) Setup CAN bus bit timing
*/
TimingValue = TDRV010_100KBIT;
UseThreeSamples = 0; /* FALSE */

result = tdrv010SetBitTiming(hdl,
TimingValue,
UseThreeSamples);

/*
** (2.) Setup acceptance filter masks
*/
AcceptanceCode = 0x0;
AcceptanceMask = 0xFFFFFFFF;
SingleFilter = 1;

result = tdrv010SetFilter(hdl,
SingleFilter,
AcceptanceCode,
AcceptanceMask);

/*
** (3.) Enter Bus On State
*/
result = tdrv010Start(hdl);

Now you should be able to send and receive CAN messages with appropriate calls to tdrv010Write()
and tdrv010Read() functions.

TDRV010-SW-82 – Linux Device Driver Page 54 of 57

4 Diagnostic
If the TDRV010 does not work properly it is helpful to get some status information from the driver
respective kernel. To get debug output from the driver enable the following symbols in ‘tdrv010.c’ by
replacing “#undef” with “#define”:

#define DEBUG_TDRV010
#define DEBUG_TDRV010_INTR

The Linux /proc file system provides information about kernel, resources, driver, devices and so on.
The following screen dumps display information of a correct running TDRV010 driver (see also the
proc man pages).

tail –f /var/log/messages /* before modprobing the TDRV010 driver */

May 9 09:03:30 linuxsmp2 kernel: TEWS TECHNOLOGIES - TDRV010 Isolated 2x
CAN Bus - version 2.0.x (<Release Date>)
May 9 09:03:30 linuxsmp2 kernel: TDRV010: Probe new device
(vendor=0x1498, device=0x0136, type=310)
May 9 09:03:30 linuxsmp2 kernel: TDRV010: Probe new device
(vendor=0x1498, device=0x032A, type=810)
/* if SYSFS + UDEV is present */
May 9 09:03:30 linuxsmp2 udev[3674]: creating device node '/dev/tdrv010_0'
May 9 09:03:30 linuxsmp2 udev[3676]: creating device node '/dev/tdrv010_1'
May 9 09:03:30 linuxsmp2 udev[3688]: creating device node '/dev/tdrv010_2'
May 9 09:03:30 linuxsmp2 udev[3689]: creating device node '/dev/tdrv010_3'
...

/* after modprobing the TDRV010 driver */

cat /proc/tews-tdrv010 /* advanced CAN channel status information */
TEWS TECHNOLOGIES - TDRV010 Isolated 2x CAN Bus - version 1.0.0 (2007-05-
09)
Supported modules: TPMC310, TPMC810

Registered SJA1000 CAN controller channels:
/dev/tdrv010_0 (phy: TPMC310 #0, mod:01 stat:3C rec:00 tec:00 alc:00 ecc:00
ewl:60, RxFIFO[rd:0,wr:0,pk#0:])
/dev/tdrv010_1 (phy: TPMC310 #1, mod:01 stat:3C rec:00 tec:00 alc:00 ecc:00
ewl:60, RxFIFO[rd:0,wr:0,pk#0:])
/dev/tdrv010_2 (phy: TPMC810 #0, mod:01 stat:3C rec:00 tec:00 alc:00 ecc:00
ewl:60, RxFIFO[rd:0,wr:0,pk#0:])
/dev/tdrv010_3 (phy: TPMC810 #1, mod:01 stat:3C rec:00 tec:00 alc:00 ecc:00
ewl:60, RxFIFO[rd:0,wr:0,pk#0:])

/*
phy = carrier + #channel
mod = mode register

TDRV010-SW-82 – Linux Device Driver Page 55 of 57

stat = status register
rec = receive error counter
tec = transmit error counter
alc = arbitration lost capture
ecc = error code capture
ewl = actual error warning limit
RxFIFO

rd = FIFO read pointer
wr = FIFO write pointer
pk = FIFO message counter peak value

*/

cat /proc/pci
.../* TPMC310 */

Bus 2, device 8, function 0:
Class 0280: PCI device 1498:0136 (rev 0).

IRQ 177.
Non-prefetchable 32 bit memory at 0xff5fe400 [0xff5fe47f].
I/O at 0xa800 [0xa87f].
Non-prefetchable 32 bit memory at 0xff5fe000 [0xff5fe00f].
Non-prefetchable 32 bit memory at 0xff5fdc00 [0xff5fddff].

.../* TPMC810 */
Bus 2, device 9, function 0:

Class 0280: PCI device 1498:032a (rev 0).
IRQ 169.
Non-prefetchable 32 bit memory at 0xff5fec00 [0xff5fec7f].
I/O at 0xa880 [0xa8ff].
Non-prefetchable 32 bit memory at 0xff5fe800 [0xff5fe9ff].

TDRV010-SW-82 – Linux Device Driver Page 56 of 57

cat /proc/interrupts
CPU0 CPU1

0: 5860733 5901379 IO-APIC-edge timer
1: 2099 1872 IO-APIC-edge i8042
2: 0 0 XT-PIC cascade
8: 0 1 IO-APIC-edge rtc
9: 2 0 IO-APIC-level acpi

12: 50793 50084 IO-APIC-edge i8042
14: 155677 148926 IO-APIC-edge ide0

169: 712307 709746 IO-APIC-level radeon@PCI:1:0:0, TDRV010
177: 0 2 IO-APIC-level uhci_hcd, AMD AMD8111, TDRV010
185: 25775 31 IO-APIC-level uhci_hcd, eth0
193: 0 1 IO-APIC-level libata, ehci_hcd, ..., TDRV010
NMI: 0 0
LOC: 11763048 11763049
ERR: 0
MIS: 0

cat /proc/iomem
...

/* TPMC310 */
ff5fdc00-ff5fddff : 0000:02:08.0

ff5fdc00-ff5fddff : TDRV010CAN
ff5fe000-ff5fe00f : 0000:02:08.0

ff5fe000-ff5fe00f : TDRV010PLD
ff5fe400-ff5fe47f : 0000:02:08.0
/* TPMC810 */
ff5fe800-ff5fe9ff : 0000:02:09.0

ff5fe800-ff5fe9ff : TDRV010CAN
...

TDRV010-SW-82 – Linux Device Driver Page 57 of 57

5 Known Issues
For some Linux installations, there might be a kernel driver claiming the TDRV010 devices. This
prevents the TDRV010-SW-82 device driver from supporting the installed modules, as the supported
physical devices may already be claimed by the kernel driver. In this case, the TDRV010-SW-82
device driver starts up well, but no device nodes are created for the CAN channels.

To suppress the automatic start of the kernel driver, add the following lines to the blacklist file
/etc/modprobe.d/blacklist.conf:

do not start the PLX_PCI kernel driver automatically
blacklist plx_pci

If the plx_pci device driver is required by other components of the system, it may be started after the
TDRV010-SW-82 device driver using startup scripts.

