
The Embedded I/O Company

TDRV010-SW-95
QNX - Neutrino Device Driver

Isolated 2x CAN Bus

Version 1.1.x

User Manual
Issue 1.1.0

November 2017

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany

Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com www.tews.com

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 2 of 41

TDRV010-SW-95
QNX - Neutrino Device Driver

Isolated 2x CAN Bus

Supported Modules:
TPMC810
TPMC310

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2009-2017 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0.0 First Issue March 19, 2009
1.0.1 Update Contact Information December 21, 2010
1.0.2 Chapter for Driver Installation with Momentics added September 8, 2016
1.1.0 Support for QNX7 added November 20, 2017

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 3 of 41

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

Building Executables on Native Systems ..52.1
2.1.1 Build the Device Driver ...5
2.1.2 Build the Example Application ..5
Building Executables with Momentics IDE (5.0) ..62.2
2.2.1 Build the Device Driver ...6
2.2.2 Build the Example Application ..6
2.2.3 Integrate the Device Driver Files to a QNX-Image ...6
Building Executables with Momentics IDE (7.0) ..72.3
2.3.1 Build the Device Driver ...7
2.3.2 Build the Example Application ..7
2.3.3 Integrate the Device Driver Files to a QNX-Image ...8
Start the Driver Process ...92.4
Receive Queue Configuration..102.5

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 11
open..113.1
close ...133.2
devctl..143.3
3.3.1 DCMD_TDRV010_READ(_NOWAIT) ..16
3.3.2 DCMD_TDRV010_WRITE ...19
3.3.3 DCMD_TDRV010_BITTIMING...22
3.3.4 DCMD_TDRV010_SETFILTER..24
3.3.5 DCMD_TDRV010_BUSON ..26
3.3.6 DCMD_TDRV010_BUSOFF ..28
3.3.7 DCMD_TDRV010_FLUSH ...29
3.3.8 DCMD_TDRV010_CANSTATUS ...30
3.3.9 DCMD_TDRV010_ENABLE_SELFTEST...32
3.3.10 DCMD_TDRV010_DISABLE_SELFTEST..34
3.3.11 DCMD_TDRV010_ENABLE_LISTENONLY ..35
3.3.12 DCMD_TDRV010_DISABLE_LISTENONLY ...36
3.3.13 DCMD_TDRV010_SETLIMIT...37
3.3.14 DCMD_TDRV010_TRANSCEIVER_OPERATING ..39
3.3.15 DCMD_TDRV010_TRANSCEIVER_SILENT...40

4 STEP BY STEP DRIVER INITIALIZATION .. 41

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 4 of 41

1 Introduction
The TDRV010-SW-95 QNX-Neutrino device driver allows the operation of the supported CAN Bus
devices on QNX-Neutrino operating systems.

The TDRV010 device driver is basically implemented as a user installable Resource Manager. The
standard file (I/O) functions (open, close and devctl) provide the basic interface for opening and
closing a file descriptor and for performing device I/O and control operations.

The TDRV010-SW-95 device driver supports the following features:

Transmission and receive of Standard and Extended Identifiers
Standard bit rates from 50 kbit up to 1 Mbit and user defined bit rates
Message acceptance filtering
Single-Shot transmission
Listen only mode
Message self-reception
Programmable error warning limit

The TDRV010-SW-95 device driver supports the modules listed below:

TPMC310 Isolated 2 x CAN Bus (PMC, Conduction Cooled)
TPMC810 Isolated 2 x CAN Bus (PMC)

In this document all supported modules and devices will be called TDRV010. Specials for
certain devices will be advised.

To get more information about the features and use of TDRV010 devices it is recommended to read
the manuals listed below.

TPMC310, TPMC810 User Manual
SJA1000 CAN Controller Manual

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 5 of 41

2 Installation
Following files are located in the directory TDRV010-SW-95 on the distribution media:

TDRV010-SW-95-SRC.tar.gz GZIP compressed archive with driver source code
TDRV010-SW-95-1.1.0.pdf This manual in PDF format
ChangeLog.txt Release history
Release.txt Information about the Device Driver Release

The GZIP compressed archive TDRV010-SW-95-SRC.tar.gz contains the following files and
directories:

Directory path ‘tdrv010’:

/driver/tdrv010.c Driver source code
/driver/tdrv010.h Definitions and data structures for driver and application
/driver/tdrv010def.h Device driver include
/driver/ sja1000.h Philips SJA1000 CAN controller definitions
/driver/node.c Queue management source code
/driver/node.h Queue management definitions
/driver/nto/* Build path
/example/example.c Example application
/example/nto/* Build path

Building Executables on Native Systems2.1
For installation copy the tar-archive into the /usr/src directory and unpack it (e.g. tar –xzvf
TDRV010-SW-95-SRC.tar.gz). After that the necessary directory structure for the automatic build
and the source files are available underneath the new directory called tdrv010.

It is absolutely important to extract the TDRV010 tar archive in the /usr/src directory. Otherwise
the automatic build with make will fail.

2.1.1 Build the Device Driver
Change to the /usr/src/tdrv010/driver directory

Execute the Makefile:

make install

After successful completion the driver binary (tdrv010) will be installed in the /bin directory.

2.1.2 Build the Example Application
Change to the /usr/src/tdrv010/example directory

Execute the Makefile:

make install

After successful completion the example binary (tdrv010exa) will be installed in the /bin directory.

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 6 of 41

Building Executables with Momentics IDE (5.0)2.2
This chapter gives just a simple description how to build the drivers with the Momentics IDE (5.0), for
more detailed information please refer to the appropriate documentation.

For installation unpack the tar-archive into the desired working directory.

After that the necessary directory structure for the automatic build and the source files are available
beneath the new directory called tdrv010.

2.2.1 Build the Device Driver
Create a new project (“Makefile Project with Existing Code”) in your workspace:

- Select a “Project Name” (e.g. TDRV010)
- Select the path “tdrv010\driver” in the working directory as “Existing Code Location”
- Select the “Toolchain for Indexer Settings” (e.g. “QNX Multi-toolchain”)

Now the device driver can be built by “Building the Project”.

After successful completion the IDE shows a “Binaries”-path containing the built binary of tdrv010
device driver. (e.g. “tdrv010 – [x86/le]”)

2.2.2 Build the Example Application
Create a new project (“Makefile Project with Existing Code”) in your workspace:

- Select a “Project Name” (e.g. TDRV010-Example)
- Select the path “tdrv010\example” in the working directory as “Existing Code Location”
- Select the “Toolchain for Indexer Settings” (e.g. “QNX Multi-toolchain”)

Now the example can be built by “Building the Project”.

After successful completion the IDE shows a “Binaries”-path containing the built binary of tdrv010
example application. (e.g. “tdrv010exa – [x86/le]”)

2.2.3 Integrate the Device Driver Files to a QNX-Image
To add the device driver file and the example application file to a QNX-Image, just a few steps are
necessary.

Copy the desired binary files of the device driver and example project into “sbin” beneath the “install”-
path of the target project using the Momentics-IDE.

Add the filenames of the added files into the build-file (e.g. “x86-generic.build”) in “images”. For
example the filenames (e.g. tdrv010, tdrv010exa) can be inserted behind the serial driver names
(insert each filename in a separate line).

After a rebuild of the QNX-Image, the driver files will be available on the disk and can be used after
booting.

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 7 of 41

Building Executables with Momentics IDE (7.0)2.3
This chapter gives just a simple description how to build the drivers with the Momentics IDE (7.0), for
more detailed information please refer to the appropriate documentation.

For installation unpack the tar-archive into the desired working directory.

After that the necessary directory structure for the automatic build and the source files are available
beneath the new directory called tdrv010.

2.3.1 Build the Device Driver
Create a new project (“Makefile Project with Existing Code”) in your workspace:

- Select a “Project Name” (e.g. TDRV010)
- Select the path “tdrv010\driver” in the working directory as “Existing Code Location”
- Select the “Toolchain for Indexer Settings” (e.g. “QNX Multi-toolchain”)

Now we have to specify the name of the driver executable and additional libraries needed for the
driver. Open the projects properties (Alt+Enter), select C/C++ Build Environment and add the
following environment variables and values to the necessary configurations:

- NAME = tdrv010
- LIBS = pci

Now the device driver can be built by “Building the Project”.

After successful completion the IDE shows a “Binaries”-path containing the built binaries of tdrv010
device driver of the enabled configurations (e.g. “tdrv010 – [x86/le]” and “tdrv010 – [x86_64/le]”).

2.3.2 Build the Example Application
Create a new project (“Makefile Project with Existing Code”) in your workspace:

- Select a “Project Name” (e.g. TDRV010-Example)
- Select the path “tdrv010\example” in the working directory as “Existing Code Location”
- Select the “Toolchain for Indexer Settings” (e.g. “QNX Multi-toolchain”)

Now we have to specify the name of the driver example executable. Open the projects properties
(Alt+Enter), select C/C++ Build Environment and add the following environment variables and values
to the necessary configurations:

- NAME = tdrv010exa

Now the example can be built by “Building the Project”.

After successful completion the IDE shows a “Binaries”-path containing the built binaries of tdrv010
example application of the enabled configurations. (e.g. “tdrv010exa – [x86/le]” and “tdrv010exa –
[x86_64/le]”)

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 8 of 41

2.3.3 Integrate the Device Driver Files to a QNX-Image
To add the device driver file and the example application file to a QNX-Image, just a few steps are
necessary.

Copy the desired binary files of the device driver and example project into “sbin” beneath the “install”-
path of the target project using the Momentics-IDE.

Add the filenames of the added files into the build-file (e.g. “x86-generic.build”) in “images”. For
example the filenames (e.g. tdrv010, tdrv010exa) can be inserted behind the serial driver names
(insert each filename in a separate line).

After a rebuild of the QNX-Image, the driver files will be available on the disk and can be used after
booting.

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 9 of 41

Start the Driver Process2.4
To start the TDRV010 device driver, you have to enter the process name with optional parameter from
the command shell or in the startup script.

tdrv010 [-v] &

The TDRV010 Resource Manager creates one device for each CAN channel, and registers the
created devices in the Neutrinos pathname space under following names.

/dev/tdrv010_0
/dev/tdrv010_1
…
/dev/tdrv010_x

The reference between the created device names and the physical devices depends on the search
order of the PCI bus driver. The TDRV010 searches for supported devices in the following order:
TPMC810, TPMC310.

Example: A system with 1x TPMC810-10, and 2x TPMC310-10 will create the following devices:

Module Local Channel Device Name
TPMC810-10 1 /dev/tdrv010_0
TPMC810-10 2 /dev/tdrv010_1
TPMC310-10 (1st) 1 /dev/tdrv010_2
TPMC310-10 (1st) 2 /dev/tdrv010_3
TPMC310-10 (2nd) 1 /dev/tdrv010_4
TPMC310-10 (2nd) 2 /dev/tdrv010_5

The pathname must be used in the application program to open a path to the desired TDRV010
device.

fd = open(“/dev/tdrv010_0”, O_RDWR);

For debugging, you can start the TDRV010 Resource Manager with the –v option. Now the Resource
Manager will print versatile information about TDRV010 configuration and command execution on the
terminal window.

tdrv010 –v &

Make sure that only one instance of the device driver process is started.

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 10 of 41

Receive Queue Configuration2.5
Received CAN messages will be stored in a FIFO buffer. The depth of the FIFO can be adapted by
changing the following symbol in tdrv010def.h.

TDRV010_RX_FIFO_SIZE
Defines the depth of the message FIFO buffer (default = 100). Valid numbers are in range
between 1 and MAXINT.

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 11 of 41

3 Device Input/Output Functions
This chapter describes the interface to the device driver I/O system.

open3.1

NAME

open() - open a file descriptor

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *pathname, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the TDRV010 device named by
pathname. The flags argument controls how the file is to be opened. TDRV010 devices must be
opened O_RDWR.

EXAMPLE

int fd;

fd = open(“/dev/tdrv010_0”, O_RDWR);
if (fd == -1)
{

/* Handle error */
}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 12 of 41

ERRORS

Returns only Neutrino specific error codes, see Neutrino Library Reference.

SEE ALSO

Library Reference - open()

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 13 of 41

close3.2

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

…

if (close(fd) != 0)
{

/* handle close error conditions */
}

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

Returns only Neutrino specific error code, see Neutrino Library Reference.

SEE ALSO

Library Reference - close()

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 14 of 41

devctl3.3

NAME

devctl() – device control functions

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>
#include <devctl.h>

int devctl
(

int filedes,
int dcmd,
void *data_ptr,
size_t n_bytes,
int *dev_info_ptr

)

DESCRIPTION

The devctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument dcmd specifies the control code for the operation.

The arguments data_ptr and n_bytes depends on the command and will be described for each
command in detail later in this chapter. Usually data_ptr points to a buffer that passes data between
the user task and the driver and n_bytes defines the size of this buffer.

The argument dev_info_ptr is unused for the TDRV010 driver and should be set to NULL.

The following devctl command codes are defined in tdrv010.h:

Value Description
DCMD_TDRV010_READ Read a CAN message from the specified

queue
DCMD_TDRV010_READ_NOWAIT Read CAN message from the specified

queue and return immediately if queue is
empty

DCMD_TDRV010_WRITE Write message to the CAN bus
DCMD_TDRV010_BITTIMING Setup a new bit timing
DCMD_TDRV010_SETFILTER Setup acceptance filter
DCMD_TDRV010_BUSON Enter the bus on state
DCMD_TDRV010_BUSOFF Enter the bus off state
DCMD_TDRV010_FLUSH Flush one or all receive queues

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 15 of 41

DCMD_TDRV010_CANSTATUS Returns CAN controller status information
DCMD_TDRV010_ENABLE_SELFTEST Enable self-test mode
DCMD_TDRV010_DISABLE_SELFTEST Disable self-test mode
DCMD_TDRV010_ENABLE_LISTENONLY Enable listen only mode
DCMD_TDRV010_DISABLE_LISTENONLY Disable listen only mode
DCMD_TDRV010_SETLIMIT Set new error warning limit
DCMD_TDRV010_TRANSCEIVER_OPERATING Set transceivers to operating state

(TPMC310 only)
DCMD_TDRV010_TRANSCEIVER_SILENT Set transceivers to silent state

(TPMC310 only)

See behind for more detailed information on each control code.

To use these TDRV010 specific control codes the header file tdrv010.h must be included in the
application.

RETURNS

On success, EOK is returned. In the case of an error, the appropriate error code is returned by the
function (not in errno!).

ERRORS

Returns only Neutrino specific error codes, see Neutrino Library Reference.

Other function dependent error codes will be described for each devctl code separately. Note, the
TDRV010 driver always returns standard QNX error codes.

SEE ALSO

Library Reference - devctl()

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 16 of 41

3.3.1 DCMD_TDRV010_READ(_NOWAIT)

NAME

DCMD_TDRV010_READ(_NOWAIT) – Read a CAN message

DESCRIPTION

The read function reads a CAN message from the driver receive queue. A pointer to the callers
message buffer (TDRV010_MSG_BUF) and the size of this structure are passed by the parameters
data_ptr and n_bytes to the device.

typedef struct {
unsigned int Identifier;
unsigned char IOFlags;
unsigned char MsgLen;
unsigned char Data[8];
int Timeout;
unsigned char Status;

} TDRV010_MSG_BUF, *PTDRV010_MSG_BUF;

Identifier
Receives the message identifier of the read CAN message.

IOFlags
Receives CAN message attributes as a set of bit flags. The following attribute flags are
possible:

Value Description
TDRV010_EXTENDED Set if the received message is an extended message

frame. Reset for standard message frames.
TDRV010_REMOTE_FRAME Set if the received message is a remote transmission

request (RTR) frame.

MsgLen
Receives the number of message data bytes (0...8).

Data[8]
This buffer receives up to 8 data bytes. Data[0] receives message Data 0, Data[1] receives
message Data 1 and so on.

Timeout
Specifies the amount of time (in seconds) the caller is willing to wait for execution of read. A
value of 0 means wait indefinitely.

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 17 of 41

Status
Receives status information about overrun conditions either in the CAN controller or
intermediate software FIFO.

Value Description
TDRV010_SUCCESS No messages lost
TDRV010_FIFO_OVERRUN One or more messages were overwritten in the receive

queue FIFO. This problem occurs if the FIFO is too
small for the application read interval.

TDRV010_MSGOBJ_OVERRUN One or more messages were overwritten in the CAN
controller message FIFO because the interrupt latency
is too large. Reduce the CAN bit rate or upgrade the
system speed.

EXAMPLE

#include “tdrv010.h”

int fd;
int result;
TDRV010_MSG_BUF MsgBuf;

MsgBuf.Timeout = 10; /* seconds */

result = devctl(fd,
DCMD_TDRV010_READ,
&MsgBuf,
sizeof(MsgBuf),
NULL);

if (result != EOK) {
/* process devctl() error */

}

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 18 of 41

ERRORS

Error Code Description
EINVAL Invalid argument. This error code is returned if the size of the message

buffer is too small.
ENOMEM No memory available to allocated resources to handle the read

command.
ECONNREFUSED The controller is in bus OFF state and no message is available in the

specified receive queue.
Note, as long as CAN messages are available in the receive queue
FIFO, bus OFF conditions were not reported by a read function. This
means you can read all CAN messages out of the receive queue FIFO
during bus OFF state without an error result.

ENODATA Currently no CAN message available for read (only
DCMD_TDRV010_READ_NOWAIT).

ETIMEDOUT The allowed time to finish the read request is elapsed.

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 19 of 41

3.3.2 DCMD_TDRV010_WRITE

NAME

DCMD_TDRV010_WRITE - Write a CAN message

DESCRIPTION

This devctl function writes a message to the CAN bus. A pointer to the callers message buffer
(TDRV010_MSG_BUF) and the size of this structure are passed by the parameters data_ptr and
n_bytes to the device.

If the CAN controller is busy transmitting a message the caller becomes blocked until all previous
pending requests are serviced or a timeout occurs.

typedef struct {
unsigned int Identifier;
unsigned char IOFlags;
unsigned char MsgLen;
unsigned char Data[8];
int Timeout;
unsigned char Status;

} TDRV010_MSG_BUF, *PTDRV010_MSG_BUF;

Identifier
Contains the message identifier of the CAN message to write.

IOFLags
Contains a set of bit flags, which define message attributes and controls the write operation. To
set more than one bit flag the predefined macros must be binary OR’ed.

Value Description
TDRV010_EXTENDED Transmit an extended message frame. If this macro isn't

set or the "dummy" macro TDRV010_STANDARD is set
a standard frame will be transmitted.

TDRV010_REMOTE_FRAME A remote transmission request (RTR bit is set) will be
transmitted.

TDRV010_SINGLE_SHOT No re-transmission will be performed if an error
occurred or the arbitration will be lost during
transmission (single-shot transmission).

TDRV010_SELF_RECEPTION The message will be transmitted and simultaneously
received if the acceptance filter is set to the
corresponding identifier.

MsgLen
Contains the number of message data bytes (0...8).

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 20 of 41

Data[8]
This buffer contains up to 8 data bytes. Data[0] contains message Data 0, Data[1] contains
message Data 1 and so on.

Timeout
Specifies the amount of time (in seconds) the caller is willing to wait for execution of write.

Status
Unused for this control function.

EXAMPLE

#include “tdrv010.h”

int fd;
int result;
TDRV010_MSG_BUF MsgBuf;

MsgBuf.Identifier = 1234;
MsgBuf.Timeout = 2; /* sec*/
MsgBuf.IOFlags = TDRV010_EXTENDED;
MsgBuf.MsgLen = 2;
MsgBuf.Data[0] = 0xaa;
MsgBuf.Data[1] = 0x55;

result = devctl(fd,
DCMD_TDRV010_WRITE,
&MsgBuf,
sizeof(MsgBuf),
NULL);

if (result != EOK) {
/* process devctl() error */

}

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 21 of 41

ERRORS

Error Code Description
EINVAL Invalid argument. This error code is returned if the size of the

message buffer is too small.
ENOMEM No memory available to allocated resources to handle the read

command.
ECONNREFUSED The controller is in bus OFF state and unable to transmit messages.
EMSGSIZE Invalid message size. MsgBuf.MsgLen must be in range between 0

and 8.
ETIMEDOUT The allowed time to finish the write request is elapsed.

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 22 of 41

3.3.3 DCMD_TDRV010_BITTIMING

NAME

DCMD_TDRV010_BITTIMING – Setup new bit timing

DESCRIPTION

This devctl function modifies the bit timing register of the CAN controller to setup a new CAN bus
transfer speed. A pointer to the callers parameter buffer (TDRV010_TIMING) and the size of this
structure are passed by the parameters data_ptr and n_bytes to the device.

Keep in mind to setup a valid bit timing value before changing into the Bus On state.

typedef struct {
unsigned short TimingValue;
unsigned short ThreeSamples;

}TDRV010_TIMING, *PTDRV010_TIMING;

TimingValue
This parameter holds the new value for the bit timing register 0 (bit 0...7) and for the bit timing
register 1 (bit 8...15). Possible transfer rates are between 50 Kbit per second and 1 Mbit per
second. The include file 'tdrv010.h' contains predefined transfer rate symbols
(TDRV010_50KBIT ... TDRV010_1MBIT).
For other transfer rates please follow the instructions of the SJA1000 Product Specification.

ThreeSamples
If this parameter is TRUE (1) the CAN bus is sampled three times per bit time instead of one.

Use one sample point for faster bit rates and three sample points for slower bit rate to make
the CAN bus more immune against noise spikes.

This devctl command will be accepted only in reset mode (BUSOFF). Enter
DCMD_TDRV010_BUSOFF first otherwise you will get an error (EACCES).

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 23 of 41

EXAMPLE

#include “tdrv010.h”

int fd;
int result;
TDRV010_TIMING BitTimingParam;

BitTimingParam.TimingValue = TDRV010_100KBIT;
BitTimingParam.ThreeSamples = FALSE;

result = devctl(fd,
DCMD_TDRV010_BITTIMING,
&BitTimingParam,
sizeof(BitTimingParam),
NULL);

if (result != EOK) {
/* process devctl() error */

}

ERRORS

Error Code Description
EACCES Permission denied. The controller is currently in BUS ON state.

Please enter the BUS OFF state before changing the bit timing.

SEE ALSO

tdrv010.h for predefined bus timing constants.

SJA1000 Product Specification Manual – 6.5.1/2 BUS TIMING REGISTER.

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 24 of 41

3.3.4 DCMD_TDRV010_SETFILTER

NAME

DCMD_TDRV010_SETFILTER - Setup acceptance filter

DESCRIPTION

This devctl function modifies the acceptance filter of the specified CAN controller device.

The acceptance filter compares the received identifier with the acceptance filter and decides whether
a message should be accepted or not. If a message passes the acceptance filter it is stored in the
receive FIFO.

The acceptance filter is defined by the acceptance code registers and the acceptance mask registers.
The bit patterns of messages to be received are defined in the acceptance code register.

The corresponding acceptance mask registers allow defining certain bit positions to be "don't care" (a
1 at a bit position means "don't care").

A pointer to the callers parameter buffer (TDRV010_FILTER) and the size of this structure are passed
by the parameters data_ptr and n_bytes to the device.

typedef struct {
int SingleFilter;
unsigned int AcceptanceCode;
unsigned int AcceptanceMask;

} TDRV010_FILTER, *PTDRV010_FILTER;

SingleFilter
Set TRUE (1) for single filter mode.
Set FALSE (0) for dual filter mode.

AcceptanceCode
The content of this parameter will be written to acceptance code register of the controller.

AcceptanceMask
The content of this parameter will be written to the acceptance mask register of the controller.

A detailed description of the acceptance filter and possible filter modes can be found in the
SJA1000 Product Specification Manual.

This devctl command will be accepted only in reset mode (BUSOFF). Enter
DCMD_TDRV010_BUSOFF first otherwise you will get an error (EACCES).

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 25 of 41

EXAMPLE

#include “tdrv010.h”

int fd;
int result;
TDRV010_FILTER AcceptFilter;

/* Not relevant because all bits are "don't care" */
AcceptFilter.AcceptanceCode = 0x0;

/* Mark all bit position don't care */
AcceptFilter.AcceptanceMask = 0xffffffff;

/* Single Filter Mode */
AcceptFilter.SingleFilter = 1; // TRUE

result = devctl(fd,
DCMD_TDRV010_SETFILTER,
& AcceptFilter,
sizeof(AcceptFilter),
NULL);

if (result != EOK) {
/* process devctl() error */

}

ERRORS

Error Code Description
EACCES Permission denied. The controller is currently in BUS ON state.

Please enter the BUS OFF state before changing the acceptance
filter.

SEE ALSO

SJA1000 Product Specification Manual – 6.4.15 ACCEPTANCE FILTER

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 26 of 41

3.3.5 DCMD_TDRV010_BUSON

NAME

DCMD_TDRV010_BUSON - Enter the bus ON state

DESCRIPTION

This devctl function sets the specified CAN controller into the bus ON state.

After an abnormal rate of occurrences of errors on the CAN bus or after driver startup, the CAN
controller enters the Bus OFF state. This control function resets the "reset mode" bit in the mode
register. The CAN controller begins the Bus OFF recovery sequence and resets the transmit and
receive error counters. If the CAN controller counts 128 packets of 11 consecutive recessive bits on
the CAN bus, the Bus OFF state is exited.

Before the driver is able to communicate over the CAN bus after driver startup, this control
function must be executed.

EXAMPLE

#include “tdrv010.h”

int fd;
int result;

result = devctl(fd,
DCMD_TDRV010_BUSON,
NULL,
0,
NULL);

if (result != EOK) {
/* process devctl() error */

}

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 27 of 41

ERRORS

Error Code Description
ECONNREFUSED Unable to enter the Bus ON mode.

SEE ALSO

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD).

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 28 of 41

3.3.6 DCMD_TDRV010_BUSOFF

NAME

DCMD_TDRV010_BUSOFF - Enter the bus OFF state

DESCRIPTION

This devctl function sets the specified CAN controller into the bus OFF state.

After execution of this control function the CAN controller is completely removed from the CAN bus
and cannot communicate until the control function DCMD_TDRV010_BUSON is executed.

EXAMPLE

#include “tdrv010.h”

int fd;
int result;

result = devctl(fd,
DCMD_TDRV010_BUSOFF,
NULL,
0,
NULL);

if (result != EOK) {
/* process devctl() error */

}

ERRORS

Error Code Description
EIO Unable to enter the bus OFF mode.

SEE ALSO

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD).

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 29 of 41

3.3.7 DCMD_TDRV010_FLUSH

NAME

DCMD_TDRV010_FLUSH - Flush the received message FIFO

DESCRIPTION

This devctl function flushes the FIFO buffer of received CAN messages.

EXAMPLE

#include “tdrv010.h”

int fd;
int result;

result = devctl(fd,
DCMD_TDRV010_FLUSH,
NULL,
0,
NULL);

if (result != EOK) {
/* process devctl() error */

}

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 30 of 41

3.3.8 DCMD_TDRV010_CANSTATUS

NAME

DCMD_TDRV010_CANSTATUS - Returns CAN controller status information

DESCRIPTION

This devctl function returns the actual contents of several CAN controller registers for diagnostic
purposes.

A pointer to the callers status buffer (TDRV010_STATUS) and the size of this structure are passed by
the parameters data_ptr and n_bytes to the device.

typedef struct {
unsigned char ArbitrationLostCapture;
unsigned char ErrorCodeCapture;
unsigned char TxErrorCounter;
unsigned char RxErrorCounter;
unsigned char ErrorWarningLimit;
unsigned char StatusRegister;
unsigned char ModeRegister;
unsigned char RxMessageCounterMax;

} TDRV010_STATUS, *PTDRV010_STATUS;

ArbitrationLostCapture
Contents of the arbitration lost capture register. This register contains information about the bit
position of losing arbitration.

ErrorCodeCapture
Contents of the error code capture register. This register contains information about the type
and location of errors on the bus.

TxErrorCounter
Contents of the TX error counter register. This register contains the current value of the transmit
error counter.

RxErrorCounter
Contents of the TX error counter register. This register contains the current value of the receive
error counter.

ErrorWarningLimit
Contents of the error warning limit register.

StatusRegister
Contents of the status register.

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 31 of 41

ModeRegister
Contents of the mode register.

RxMessageCounterMax
Contains the peak value of messages in the receive FIFO. This internal counter value will be
reset to 0 after reading.

EXAMPLE

#include “tdrv010.h”

int fd;
int result;
TDRV010_STATUS CanStatus;

result = devctl(fd,
DCMD_TDRV010_CANSTATUS,
&CanStatus,
sizeof(CanStatus),
NULL);

if (result != EOK) {
/* process devctl() error */

}

SEE ALSO

SJA1000 Product Specification Manual

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 32 of 41

3.3.9 DCMD_TDRV010_ENABLE_SELFTEST

NAME

DCMD_TDRV010_ENABLE_SELFTEST - Enable self-test mode

DESCRIPTION

This devctl function enables the self-test facility of the SJA1000 CAN controller.

In this mode a full node test is possible without any other active node on the bus using the self-
reception facility. The CAN controller will perform a successful transmission even if there is no
acknowledge received.

Also in self-test mode the normal functionality is given, that means the CAN controller is able to
receive messages from other nodes and can transmit message to other nodes if any connected.

This devctl command will be accepted only in reset mode (BUSOFF). Enter
DCMD_TDRV010_BUSOFF first otherwise you will get an error (EACCES).

EXAMPLE

#include “tdrv010.h”

int fd;
int result;

result = devctl(fd,
DCMD_TDRV010_ENABLE_SELFTEST,
NULL,
0,
NULL);

if (result != EOK) {
/* process devctl() error */

}

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 33 of 41

ERRORS

Error Code Description
EACCES The CAN controller is in operating mode. This mode can be changed

only in reset mode.

SEE ALSO

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 34 of 41

3.3.10 DCMD_TDRV010_DISABLE_SELFTEST

NAME

DCMD_TDRV010_DISABLE_SELFTEST - Disable self-test mode

DESCRIPTION

This devctl function disables the self-test facility of the SJA1000 CAN controller, which has been
enabled before with the devctl command DCMD_TDRV010_ENABLE_SELFTEST.

This devctl command will be accepted only in reset mode (BUSOFF). Enter
DCMD_TDRV010_BUSOFF first otherwise you will get an error (EACCES).

EXAMPLE

#include “tdrv010.h”

int fd;
int result;

result = devctl(fd,
DCMD_TDRV010_DISABLE_SELFTEST,
NULL,
0,
NULL);

if (result != EOK) {
/* process devctl() error */

}

ERRORS

Error Code Description
EACCES The CAN controller is in operating mode. This mode can be

changed only in reset mode.

SEE ALSO

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 35 of 41

3.3.11 DCMD_TDRV010_ENABLE_LISTENONLY

NAME

DCMD_TDRV010_ENABLE_LISTENONLY - Enable listen only mode

DESCRIPTION

This devctl function enables the listen only facility of the SJA1000 CAN controller.

In this mode the CAN controller would give no acknowledge to the CAN-bus, even if a message is
received successfully. Message transmission is not possible. All other functions can be used like in
normal mode.

This mode can be used for software driver bit rate detection and 'hot-plugging'.

This devctl command will be accepted only in reset mode (BUSOFF). Enter
DCMD_TDRV010_BUSOFF first otherwise you will get an error (EACCES).

EXAMPLE

#include “tdrv010.h”

int fd;
int result;
result = devctl(fd,

DCMD_TDRV010_ENABLE_LISTENONLY,
NULL,
0,
NULL);

if (result != EOK) {
/* process devctl() error */

}

ERRORS

Error Code Description
EACCES The CAN controller is in operating mode. This mode can be

changed only in reset mode.

SEE ALSO

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 36 of 41

3.3.12 DCMD_TDRV010_DISABLE_LISTENONLY

NAME

DCMD_TDRV010_DISABLE_LISTENONLY - Disable listen only mode

DESCRIPTION

This devctl function disables the listen only facility of the SJA1000 CAN controller, which has been
enabled before with the devctl command DCMD_TDRV010_ENABLE_LISTENONLY.

This devctl command will be accepted only in reset mode (BUSOFF). Enter
DCMD_TDRV010_BUSOFF first otherwise you will get an error (EACCES).

EXAMPLE

#include “tdrv010.h”

int fd;
int result;

result = devctl(fd,
DCMD_TDRV010_DISABLE_LISTENONLY,
NULL,
0,
NULL);

if (result != EOK) {
/* process devctl() error */

}

ERRORS

Error Code Description
EACCES The CAN controller is in operating mode. This mode can be

changed only in reset mode.

SEE ALSO

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 37 of 41

3.3.13 DCMD_TDRV010_SETLIMIT

NAME

DCMD_TDRV010_SETLIMIT - Disable listen only mode

DESCRIPTION

This devctl function sets a new error warning limit in the corresponding CAN controller register. The
default value (after hardware reset) is 96.

The new error warning limit will be set in an unsigned char variable. A pointer to this variable is passed
by the parameters data_ptr to the driver. The size of this variable is passed by the parameter n_bytes
to the driver.

This devctl command will be accepted only in reset mode (BUSOFF). Enter
DCMD_TDRV010_BUSOFF first otherwise you will get an error (EACCES).

EXAMPLE

#include “tdrv010.h”

int fd;
int result;
unsigned char ErrorLimit

ErrorLimit = 20;
result = devctl(fd,

DCMD_TDRV010_SETLIMIT,
&ErrorLimit,
sizeof(ErrorLimit),
NULL);

if (result != EOK) {
/* process devctl() error */

}

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 38 of 41

ERRORS

Error Code Description
EACCES The CAN controller is in operating mode. This mode can be changed

only in reset mode.

SEE ALSO

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 39 of 41

3.3.14 DCMD_TDRV010_TRANSCEIVER_OPERATING

NAME

DCMD_TDRV010_TRANSCEIVER_OPERATING – Switch transceiver into Operating Mode

DESCRIPTION

This devctl function switches the onboard transceivers for the specific channel into Operating Mode.

This function is only supported by TPMC310 modules.

EXAMPLE

#include “tdrv010.h”

int fd;
int result;

result = devctl(fd,
DCMD_TDRV010_TRANSCEIVER_OPERATING,
NULL,
0,
NULL);

if (result != EOK) {
/* process devctl() error */

}

ERRORS

Error Code Description
ENOTSUP Function is not supported by hardware.

SEE ALSO

TPMC310 Hardware User Manual

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 40 of 41

3.3.15 DCMD_TDRV010_TRANSCEIVER_SILENT

NAME

DCMD_TDRV010_TRANSCEIVER_SILENT – Switch transceiver into Silent Mode

DESCRIPTION

This devctl function switches the onboard transceivers for the specific channel into Silent Mode.

This function is only supported by TPMC310 modules.

EXAMPLE

#include “tdrv010.h”

int fd;
int result;

result = devctl(fd,
DCMD_TDRV010_TRANSCEIVER_SILENT,
NULL,
0,
NULL);

if (result != EOK) {
/* process devctl() error */

}

ERRORS

Error Code Description
ENOTSUP Function is not supported by hardware.

SEE ALSO

TPMC310 Hardware User Manual

TDRV010-SW-95 – QNX - Neutrino Device Driver Page 41 of 41

4 Step by Step Driver Initialization
The following code example illustrates all necessary steps to initialize a CAN device for
communication, assuming the device is in BUSOFF state.

/*
** (1.) Setup CAN bus bit timing
*/
BitTimingParam.TimingValue = TDRV010_100KBIT;
BitTimingParam.ThreeSamples = 0; /* FALSE */

result = devctl(fd,
DCMD_TDRV010_BITTIMING,
&BitTimingParam,
sizeof(BitTimingParam),
NULL);

/*
** (2.) Setup acceptance filter masks
*/
AcceptFilter.AcceptanceCode = 0x0;
AcceptFilter.AcceptanceMask = 0xFFFFFFFF;
AcceptFilter.SingleFilter = 1;

result = devctl(fd,
DCMD_TDRV010_SETFILTER,
& AcceptFilter,
sizeof(AcceptFilter),
NULL);

/*
** (3.) Enter Bus On State
*/
result = devctl(fd,

DCMD_TDRV010_BUSON,
NULL,
0,
NULL);

Now you should be able to send and receive CAN messages with appropriate calls to
DCMD_TDRV010_WRITE and DCMD_TDRV010_READ functions.

