
The Embedded I/O Company

TDRV011-SW-65
Windows Device Driver

Extended CAN

Version 3.0.x

User Manual
Issue 3.0.1
July 2013

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany

Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com www.tews.com

TDRV011-SW-65 – Windows Device Driver Page 2 of 51

TDRV011-SW-65
Windows Device Driver

Extended CAN

Supported Modules:
TPMC316
TPMC816
TPMC901

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2007-2014 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0.0 First Issue June 06, 2007
1.0.1 Files moved to subdirectory June 23, 2008
1.0.2 General revision October 14, 2009
1.0.3 Added programming hints for IOCTL_TDRV011_SETFILTER and

IOCTL_TDRV011_DEF_RX_BUF
February 11, 2010

2.0.0 General Revision, Windows 7 and 64-bit Support,
Implementation of API

June 16, 2011

3.0.0 New Parameter List for Function tdrv011UpdateReceiveMsgObj August 16, 2013
3.0.1 General revision July 8, 2014

TDRV011-SW-65 – Windows Device Driver Page 3 of 51

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

Software Installation (Windows 7 / XP)...52.1
Confirming Driver Installation ...52.2

3 DRIVER CONFIGURATION ... 6
Number of Receive Queues ...63.1
Depth of Receive Queue...63.2
Transmit Message Object ..63.3

4 API DOCUMENTATION ... 7
General Functions...74.1
4.1.1 tdrv011Open ...7
4.1.2 tdrv011Close...9
Device Access Functions...114.2
4.2.1 tdrv011Write ...11
4.2.2 tdrv011Read ...14
4.2.3 tdrv011ReadNoWait ...19
4.2.4 tdrv011SetFilter ..23
4.2.5 tdrv011GetFilter ..25
4.2.6 tdrv011SetBitTiming ...28
4.2.7 tdrv011Start ..31
4.2.8 tdrv011Stop ..33
4.2.9 tdrv011DefineReceiveMsgObj..35
4.2.10 tdrv011DefineRemoteMsgObj ..38
4.2.11 tdrv011UpdateRemoteMsgObj ...41
4.2.12 tdrv011UpdateReceiveMsgObj...43
4.2.13 tdrv011ReleaseMsgObj ..45
4.2.14 tdrv011FlushReceiveFifo..47
4.2.15 tdrv011GetControllerStatus ..49

5 APPENDIX.. 51
Step by Step Initialization ..515.1
5.1.1 Transmit and Receive Messages ...51
5.1.2 Answer to Remote Frames...51
5.1.3 Request Remote Messages ...51

TDRV011-SW-65 – Windows Device Driver Page 4 of 51

1 Introduction
The TDRV011-SW-65 Windows device driver is a kernel mode driver which allows the operation of the
supported hardware module on an Intel or Intel-compatible Windows operating system.

The TDRV011-SW-65 device driver supports the following features:

Transmission and receive of standard and extended Identifiers
Up to 14 receive message queues with user defined size
Variable allocation of receive message objects to receive queues
Separate job queues for each receive queue and transmission buffer message object
Standard bit rates from 20 kbit up to 1.0 Mbit and user defined bit rates
Message acceptance filtering
Definition of receive and remote buffer message objects

The TDRV011-SW-65 device driver supports the modules listed below:

TPMC316 2 Channel extended CAN (isolated) (PMC, Conduction Cooled)
TPMC816 2/1 Channel extended CAN (isolated) (PMC)
TPMC901 6/4/2 Channel extended CAN (PMC)

In this document all supported modules and devices will be called TDRV011. Specials for
certain devices will be advised.

To get more information about the features and use of TDRV011 devices it is recommended to read
the manuals listed below.

TPMC316, TPMC816 or TPMC901 User manual
Intel 82527 Architectural Overview

TDRV011-SW-65 – Windows Device Driver Page 5 of 51

2 Installation
Following files are located in directory TDRV011-SW-65 on the distribution media:

i386\ Directory containing driver files for 32bit Windows versions
amd64\ Directory containing driver files for 64bit Windows versions
installer_32bit.exe Installation tool for 32bit systems (Windows XP or later)
installer_64bit.exe Installation tool for 64bit systems (Windows XP or later)
tdrv011.inf Windows installation script
tdrv011.h Header file with IOCTL codes and structure definitions
api\tdrv011api.h API include file
api\tdrv011api.c API source file
example\tdrv011exa.c Example application
TDRV011-SW-65-3.0.1.pdf This document
Release.txt Information about the Device Driver Release
ChangeLog.txt Release history

Software Installation (Windows 7 / XP)2.1
This chapter describes how to install the TDRV011-SW-65 Device Driver on a Windows 7 (32bit or
64bit) or Windows XP (32bit) operating system.

Depending on the operating system type, execute the installer binaries for either 32bit or 64bit
systems. This will install all required driver files using an installation wizard.

Copy needed files (tdrv011.h, API files) to desired target directory.

After successful installation a device is created for each module found (TDRV011_1, TDRV011_2 ...).

Confirming Driver Installation2.2
To confirm that the driver has been properly loaded, perform the following steps:

1. Open the Windows Device Manager:

a. For Windows XP, open the "Control Panel" from "My Computer" and click the
"System" icon and choose the "Hardware" tab, and then click the "Device Manager"
button.

b. For Windows 7, open the "Control Panel" from "My Computer" and then click the
"Device Manager" entry.

2. Click the "+" in front of "Embedded I/O".
The driver "TEWS TECHNOLOGIES - TDRV011 (Multi Channel Extended CAN) (…)" should
appear for each installed device.

TDRV011-SW-65 – Windows Device Driver Page 6 of 51

3 Driver Configuration
The driver allows individual adaptations of buffers by changing parameters in the windows registry. All
registry keys described below can be found and modified in the registry path:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\tdrv011\Parameters\

After modification of any of the registry keys the driver (or the system) needs to be restarted to make
the changes applicable.

Number of Receive Queues3.1
The number of receive queues can be modified. This allows an adaptation for applications which
should use presorting of messages by message objects.

To change the number of receive queues the value of NumRxQueues in registry path must be
modified.

Default value: 2
Valid value range: 1…14

Depth of Receive Queue3.2
The depth of the receive queue may be adapted if the application may not read data or is blocked
by another application for a while, but there are still incoming messages that must be handled.
Increasing the value will allow storing more messages in the receive queue(s).

To change the depth of receive queues the value of FIFODepth in registry path must be modified.

Default value: 100
Valid value range: 1…1000

Transmit Message Object3.3
This parameter specifies the message object used for transmit. The selected object cannot be
defined for receive or remote and it cannot be released.

To change the transmit message object the value of TransmitObject in registry path must be
modified.

Default value: 1
Valid value range: 1…14

TDRV011-SW-65 – Windows Device Driver Page 7 of 51

4 API Documentation
General Functions4.1

4.1.1 tdrv011Open

NAME

tdrv011Open – opens a device.

SYNOPSIS

TDRV011_HANDLE tdrv011Open
(

char *DeviceName
)

DESCRIPTION

Before I/O can be performed to a device, a file descriptor must be opened by a call to this function.

PARAMETERS

DeviceName
This parameter points to a null-terminated string that specifies the name of the device.

TDRV011-SW-65 – Windows Device Driver Page 8 of 51

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;

/*
** open file descriptor to device
*/
hdl = tdrv011Open(“\\\\.\\TDRV011_1”);
if (hdl == NULL)
{

/* handle open error */
}

RETURNS

A device handle, or NULL if the function fails. To get extended error information, call GetLastError.

ERROR CODES

The error code is a standard error code set by the I/O system.

TDRV011-SW-65 – Windows Device Driver Page 9 of 51

4.1.2 tdrv011Close

NAME

tdrv011Close – closes a device.

SYNOPSIS

int tdrv011Close
(

TDRV011_HANDLE hdl
)

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;
TDRV011_STATUS result;

/*
** close file descriptor to device
*/
result = tdrv011Close(hdl);
if (result != TDRV011_OK)
{

/* handle close error */
}

TDRV011-SW-65 – Windows Device Driver Page 10 of 51

RETURNS

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

All error codes are standard error codes set by the I/O system.

TDRV011-SW-65 – Windows Device Driver Page 11 of 51

Device Access Functions4.2

4.2.1 tdrv011Write

NAME

tdrv011Write – write a CAN message

SYNOPSIS

TDRV011_STATUS tdrv011Write
(

TDRV011_HANDLE hdl,
int canChannel,
int timeout,
unsigned int identifier,
unsigned int extMsgFlag,
int length,
unsigned char *pData

)

DESCRIPTION

This function writes a messages to the specified device for subsequent transmission on the CAN bus.
The request will be blocked until the message was send or an error occurs.

PARAMETERS

hdl
This argument specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

canChannel
This argument specifies the CAN channel number on which the message shall be send.
Channel numbers are starting with 0 for the 1st channel on a TDRV011 device, 1 for the 2nd
channel on a TDRV011 device and so on. The last valid channel number depends on the
installed module type.

timeout
This argument specifies the time (in milliseconds, one second granularity) the function is willing
to wait for a completion of message transfer.

identifier
This argument specifies the message identifier of the message.

TDRV011-SW-65 – Windows Device Driver Page 12 of 51

extMsgFlag
This argument specifies if the message shall be send in standard or extended CAN message
format. One of the following flags must be set:
Value Description
TDRV011_STANDARD_IDENTIFIER Set if the message shall be send as a standard CAN

message frame.
TDRV011_EXTENDED_IDENTIFIER Set if the message shall be send as an extended

CAN message frame.

length
This argument specifies the data length of the message data stored in the data buffer (pData). A
valid length is 0…8.

pData
This argument points to a buffer where the write data bytes are stored to. Data[0] contains the
first data byte to send, Data[1] contains the second data byte and so on. The number of valid
bytes must be specified by length.

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;
int result;

/*
** Send a CAN message on channel 2
*/
result = tdrv011Write (hdl,

2, /* channel */
5000, /* 5 seconds */
1234, /* message identifier: 1234 */
TDRV011_EXTENDED_IDENTIFIER,
5, /* number of valid data bytes */
“Hello”);

if (result != TDRV011_OK)
{

/* handle error */
}

TDRV011-SW-65 – Windows Device Driver Page 13 of 51

RETURN VALUE

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV011_ERR_INVALID_HANDLE Invalid TDRV011 Device Handle specified
TDRV011_ERR_INVAL A buffer pointer is NULL, or specified value contains

an invalid value.
TDRV011_ERR_NETDOWN The channel is stopped (BUS OFF), but it must be in

BUS ON state to receive messages.
TDRV011_ERR_NOMEM An error occurred when allocating memory for the

request.
TPMC011_ERR_TIMEOUT The specified timeout time has expired before the

message was send.
Other returned error codes are system error conditions.

TDRV011-SW-65 – Windows Device Driver Page 14 of 51

4.2.2 tdrv011Read

NAME

tdrv011Read – read a CAN message from device

SYNOPSIS

TDRV011_STATUS tdrv011Read
(

TDRV011_HANDLE hdl,
int canChannel,
int rcvQueue,
int timeout,
unsigned int flags,
unsigned int *pIdentifier,
unsigned int *pExtMsgFlag,
int *pLength,
unsigned char *pData,
unsigned int *pOverrunState

)

DESCRIPTION

This function reads a message from a specified device. If no message has been received, the function
will wait until a message is received, or the function times out after a specified time.

Before the driver can receive CAN messages it’s necessary to define at least one receive
message object.

PARAMETERS

hdl
This argument specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

canChannel
This argument specifies the CAN channel number on which a message shall be received.
Channel numbers are starting with 0 for the 1st channel on a TDRV011 device, 1 for the 2nd
channel on a TDRV011 device and so on. The last valid channel number depends on the
installed module type.

rcvQueue
This argument specifies the receive queue number to use. Allowed values are 1 up to the last
configured receive queue number.

TDRV011-SW-65 – Windows Device Driver Page 15 of 51

timeout
This argument specifies the time (in milliseconds, one second granularity) the function is willing
to wait for an incoming message.

flags
This argument specifies special settings for this read function. The specified flags are defined:
Flag Description
TDRV011_FLUSH_BEFORE_READ If this flag is set, the specified receive queue will be

flushed, before the read request is started. The
function will not return messages that have been
received before the function has been called.

pIdentifier
This argument is a pointer to an unsigned int variable where the message identifier of the
received message will be stored to.

pExtMsgFlag
This argument is a pointer to an unsigned int variable where the function sets a flag if the
received message contains a standard or an extended identifier. The following flags may be set:
Value Description
TDRV011_STANDARD_IDENTIFIER Set if the received message is a standard CAN

message frame.
TDRV011_EXTENDED_IDENTIFIER Set if the received message is an extended CAN

message frame.

pLength
This argument is a pointer to an int variable where the data length of the received message data
in bytes will be stored to. The returned length will always be 0…8.

pData
This argument points to a buffer where the received data bytes will stored to. This buffer must
have a length of at least 8 byte. Data[0] receives the first data byte, Data[1] receives the second
data byte and so on. The number of valid bytes is specified by pLength.

TDRV011-SW-65 – Windows Device Driver Page 16 of 51

pOverrunState
This parameter is a pointer to an unsigned int variable which receives the status information
about overrun conditions either in the CAN controller or intermediate software FIFO’s.
Value Description
TDRV011_SUCCESS No messages lost.
TDRV011_FIFO_OVERRUN One or more messages have been overwritten in the

receive queue FIFO. This problem occurs if the FIFO
is too small for the application read interval.

TDRV011_MSGOBJ_OVERRUN One or more messages have been overwritten in the
CAN controller message object because the interrupt
latency is too large. Keep in mind Windows isn’t a
real-time operating system. Use message object 15
(buffered) to receive this time critical CAN messages,
reduce the CAN bit rate or upgrade the system
speed.

TDRV011_RAW_FIFO_OVERRUN One or more messages have been overwritten in the
FIFO between the interrupt service routine and post-
processing in the driver, on lower system priority
levels

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;
int result, i;
unsigned int identifier;
unsigned int extMsgFlags;
int dataLen;
unsigned char dataBuf[8];
unsigned int overrunState;

…

TDRV011-SW-65 – Windows Device Driver Page 17 of 51

…

/*
** Read a CAN message from channel 2, queue 2
** - timeout after 5 seconds
** - flush Rx FIFO before read
*/
result = tdrv011Read (hdl,

2, /* channel */
2, /* receive queue */
5000, /* timeout */
TDRV011_FLUSH_BEFORE_READ,
&identifier,
&extMsgFlags,
&dataLen,
dataBuf,
&overrunState);

if (result != TDRV011_OK)
{

/* handle error */
}
else
{

/* successful */
if(overrunState != TDRV011_SUCCESS)
{

printf("<<< message(s) lost >>> \n");
}
printf("%s %s Identifier = %ld\n",

(extMsgFlags & TDRV011_EXTENDED_IDENTIFIER) ? "Extd" : "Stnd",
identifier);

printf("%d data bytes received\n", dataLen);
for(i = 0; i < dataLen; i++)
{

printf("%02X ", dataBuf[i]);
}
printf("\n")

}

TDRV011-SW-65 – Windows Device Driver Page 18 of 51

RETURN VALUE

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV011_ERR_INVALID_HANDLE Invalid TDRV011 Device Handle specified
TDRV011_ERR_INVAL A buffer pointer is NULL, or specified value contains

an invalid value.
TDRV011_ERR_NETDOWN The channel is stopped (BUS OFF), but it must be in

BUS ON state to receive messages.
TDRV011_ERR_BUSY There is already another job waiting for message

reception on the specified queue.
TPMC011_ERR_TIMEOUT The specified timeout time has expired without

receiving a message.
Other returned error codes are system error conditions.

TDRV011-SW-65 – Windows Device Driver Page 19 of 51

4.2.3 tdrv011ReadNoWait

NAME

tdrv011ReadNoWait – read a CAN message from device (non-blocked)

SYNOPSIS

TDRV011_STATUS tdrv011ReadNoWait
(

TDRV011_HANDLE hdl,
int canChannel,
int rcvQueue,
unsigned int *pIdentifier,
unsigned int *pExtMsgFlag,
int *pLength,
unsigned char *pData,
unsigned int *pOverrunState

)

DESCRIPTION

This function reads a message from a specified device. If no message has been received, the function
will return immediately with an appropriate error code.

Before the driver can receive CAN messages it’s necessary to define at least one receive
message object.

PARAMETERS

hdl
This argument specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

canChannel
This argument specifies the CAN channel number on which the message object to be defined.
Channel numbers are starting with 0 for the 1st channel on a TDRV011 device, 1 for the 2nd
channel on a TDRV011 device and so on. The last valid channel number depends on the
installed module type.

rcvQueue
This argument specifies the receive queue number to use. Allowed values are 1 up to the last
configured receive queue number.

pIdentifier
This argument is a pointer to an unsigned int variable where the message identifier of the
received message will be stored to.

TDRV011-SW-65 – Windows Device Driver Page 20 of 51

pExtMsgFlag
This argument is a pointer to an unsigned int variable where the function sets a flag if the
received message contains a standard or an extended identifier. The following flags may be set:
Value Description
TDRV011_STANDARD_IDENTIFIER Set if the received message is a standard CAN

message frame.
TDRV011_EXTENDED_IDENTIFIER Set if the received message is an extended CAN

message frame.

pLength
This argument is a pointer to an int variable where the data length of the received message data
in bytes will be stored to. The returned length will always be 0…8.

pData
This argument points to a buffer where the received data bytes will stored to. This buffer must
have a length of at least 8 byte. Data[0] receives the first data byte, Data[1] receives the second
data byte and so on. The number of valid bytes is specified by pLength.

pOverrunState
This argument is a pointer to an unsigned int variable which receives the status information
about overrun conditions either in the CAN controller or intermediate software FIFO’s.
Value Description
TDRV011_SUCCESS No messages lost.
TDRV011_FIFO_OVERRUN One or more messages have been overwritten in the

receive queue FIFO. This problem occurs if the FIFO
is too small for the application read interval.

TDRV011_MSGOBJ_OVERRUN One or more messages have been overwritten in the
CAN controller message object because the interrupt
latency is too large. Keep in mind Windows isn’t a
real-time operating system. Use message object 15
(buffered) to receive this time critical CAN messages,
reduce the CAN bit rate or upgrade the system
speed.

TDRV011_RAW_FIFO_OVERRUN One or more messages have been overwritten in the
FIFO between the interrupt service routine and post-
processing in the driver, on lower system priority
levels

TDRV011-SW-65 – Windows Device Driver Page 21 of 51

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;
int result, i;
unsigned int identifier;
unsigned int extMsgFlags;
int dataLen;
unsigned char dataBuf[8];
unsigned int overrunState;

/*
** Read a CAN message from channel 2, queue 2
** - timeout after 5 seconds
** - flush Rx FIFO before read
*/
result = tdrv011ReadNoWait (hdl,

2, /* channel */
2, /* receive queue */
&identifier,
&extMsgFlags,
&dataLen,
dataBuf,
&overrunState);

if (result != TDRV011_OK)
{

/* handle error */
}
else
{ /* successful */

if(overrunState != TDRV011_SUCCESS)
printf("<<< message(s) lost >>> \n");

printf("%s %s Identifier = %ld\n",
(extMsgFlags & TDRV011_EXTENDED_IDENTIFIER) ? "Extd" : "Stnd",
identifier);

printf("%d data bytes received\n", dataLen);
for(i = 0; i < dataLen; i++)
{

printf("%02X ", dataBuf[i]);
}
printf("\n")

}

TDRV011-SW-65 – Windows Device Driver Page 22 of 51

RETURN VALUE

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV011_ERR_INVALID_HANDLE Invalid TDRV011 Device Handle specified
TDRV011_ERR_INVAL A buffer pointer is NULL, or specified value contains

an invalid value.
TDRV011_ERR_NETDOWN The channel is stopped (BUS OFF), but it must be in

BUS ON state to receive messages.
TDRV011_ERR_BUSY There is already another job waiting for message

reception on the specified queue.
TDRV011_ERR_NODATA No data available.
Other returned error codes are system error conditions.

TDRV011-SW-65 – Windows Device Driver Page 23 of 51

4.2.4 tdrv011SetFilter

NAME

tdrv011SetFilter – write acceptance filter masks

SYNOPSIS

TDRV011_STATUS tdrv011SetFilter
(

TDRV011_HANDLE hdl,
int canChannel,
unsigned short globalMaskStandard,
unsigned int globalMaskExtended,
unsigned int message15Mask

)

DESCRIPTION

This function modifies the acceptance filter masks of the specified CAN controller.

The acceptance masks allow message objects to receive messages with a range of message
identifiers instead of just a single message identifier. A ‘0’ value means "don't care" or accept a ‘0’ or
"1" for that bit position. A value of ‘1’ means that the incoming bit value "must-match" identically to the
corresponding bit in the message identifier.

A detailed description of the acceptance filter can be found in the Intel 82527 Architectural
Overview - Acceptance Filtering Implications.

PARAMETERS

hdl
This argument specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

canChannel
This argument specifies the CAN channel number on which the message object to be defined.
Channel numbers are starting with 0 for the 1st channel on a TDRV011 device, 1 for the 2nd
channel on a TDRV011 device and so on. The last valid channel number depends on the
installed module type.

globalMaskStandard
This argument contains the value for the Global Mask-Standard Register. The Global Mask-
Standard Register applies only to messages using the standard CAN identifier. The 11 bit
identifier appears in bit position 5..15.

TDRV011-SW-65 – Windows Device Driver Page 24 of 51

globalMaskExtended
This argument contains the value for the Global Mask-Extended Register. The Global Mask-
Extended Register applies only to messages using the extended CAN identifier. The 29 bit
identifier appears in bit position 3..31.

message15Mask
This argument contains the value for the Message 15 Mask Register. The Message 15 Mask
Register is a local mask for message object 15. The 29 bit identifier appears in bit position
3..31. The Message 15 Mask is "ANDed" with the Global Mask. This means that any bit defined
as "don't care" in the Global Mask will automatically be a "don't care" bit for message 15.

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;
int result;

/*
** Set acceptance filter.
** Message Object 15 shall accept all messages
*/
result = tdrv011SetFilter (hdl,

2, /* channel */
0xFFFF, /* globalMaskStandard */
0xFFFFFFFF, /* globalMaskExtended */
0x00000000); /* message15Mask */

if (result != TDRV011_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV011_ERR_INVALID_HANDLE Invalid TDRV011 Device Handle specified
TDRV011_ERR_INVAL A buffer pointer is NULL, or specified value contains

an invalid value.
Other returned error codes are system error conditions.

TDRV011-SW-65 – Windows Device Driver Page 25 of 51

4.2.5 tdrv011GetFilter

NAME

tdrv011GetFilter – get acceptance filter masks

SYNOPSIS

TDRV011_STATUS tdrv011GetFilter
(

TDRV011_HANDLE hdl,
int canChannel,
unsigned short *pGlobalMaskStandard,
unsigned int *pGlobalMaskExtended,
unsigned int *pMessage15Mask

)

DESCRIPTION

This function reads the acceptance filter masks from the specified CAN controller.
The acceptance masks allow message objects to receive messages with a range of message
identifiers instead of just a single message identifier. A ‘0’ value means "don't care" or accept a ‘0’ or
"1" for that bit position. A value of ‘1’ means that the incoming bit value "must-match" identically to the
corresponding bit in the message identifier.

A detailed description of the acceptance filter can be found in the Intel 82527 Architectural
Overview - Acceptance Filtering Implications.

PARAMETERS

hdl
This argument specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

canChannel
This argument specifies the CAN channel number on which the message object to be defined.
Channel numbers are starting with 0 for the 1st channel on a TDRV011 device, 1 for the 2nd
channel on a TDRV011 device and so on. The last valid channel number depends on the
installed module type.

pGlobalMaskStandard
This argument is a pointer to an unsigned short variable where the content of the Global Mask-
Standard Register is stored. The 11 bit identifier appears in bit position 5..15.

TDRV011-SW-65 – Windows Device Driver Page 26 of 51

pGlobalMaskExtended
This argument is a pointer to an unsigned int variable where the content of the Global Mask-
Extended Register is stored. The 29 bit identifier appears in bit position 3..31.

pMessage15Mask
This argument is a pointer to an unsigned int variable where the content of the Message 15
Mask Register is stored. The 29 bit identifier appears in bit position 3..31.

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;
unsigned short globalMaskStandard;
unsigned int globalMaskExtended;
unsigned int message15Mask;
int result;

/*
** Read acceptance filter.
*/
result = tdrv011GetFilter (hdl,

2, /* channel */
&globalMaskStandard,
&globalMaskExtended,
&message15Mask);

if (result != TDRV011_OK)
{

/* handle error */
}
else
{

printf(“Standard Mask: 0x%X\n”, globalMaskStandard)
printf(“Extended Mask: 0x%X\n”, globalMaskExtended)
printf(“Mask 15: 0x%X\n”, message15Mask)

}

TDRV011-SW-65 – Windows Device Driver Page 27 of 51

RETURN VALUE

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV011_ERR_INVALID_HANDLE Invalid TDRV011 Device Handle specified
TDRV011_ERR_INVAL A buffer pointer is NULL, or specified value contains

an invalid value.
Other returned error codes are system error conditions.

TDRV011-SW-65 – Windows Device Driver Page 28 of 51

4.2.6 tdrv011SetBitTiming

NAME

tdrv011SetBitTiming – set bit timing register (transfer rate)

SYNOPSIS

TDRV011_STATUS tdrv011SetBitTiming
(

TDRV011_HANDLE hdl,
int canChannel,
unsigned short timingValue,
unsigned int useThreeSamples

)

DESCRIPTION

This function configures the bit timing registers of the CAN controller to setup a new CAN bus transfer
speed.

Keep in mind setting the bit timing before changing into the Bus On state.

PARAMETERS

hdl
This argument specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

canChannel
This argument specifies the CAN channel number on which the message object to be defined.
Channel numbers are starting with 0 for the 1st channel on a TDRV011 device, 1 for the 2nd
channel on a TDRV011 device and so on. The last valid channel number depends on the
installed module type.

TDRV011-SW-65 – Windows Device Driver Page 29 of 51

timingValue
This argument contains the new value for the bit timing register 0 (bit 8…15) and bit timing
register 1 (bit 0…7).). Possible transfer rates are between 20 Kbit per second and 1 Mbit per
second.
The following defines are predefined timing values for the most common transfer rates:
Value Transfer Rate (max. distance)
TDRV011_20KBIT 20 Kbit/s (max. distance: 3.3 km)
TDRV011_50KBIT 50 Kbit/s (max. distance: 1.3 km)
TDRV011_100KBIT 100 Kbit/s (max. distance: 620 m)
TDRV011_125KBIT 125 Kbit/s (max. distance: 530 m)
TDRV011_250KBIT 250 Kbit/s (max. distance: 270 m)
TDRV011_500KBIT 500 Kbit/s (max. distance: 130 m)
TDRV011_1MBIT 1 Mbit/s (max. distance: 40 m)

For other transfer rates please follow the instructions of the Intel 82527 Architectural
Overview

useThreeSamples
If this argument is set to TDRV011_USE_THREE_SAMPLES the CAN bus is sampled three
times per bit time instead of one time.

Use one sample point for faster bit rates and three sample points for slower bit rate to
make the CAN bus more immune against noise spikes.

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;
int result;

/*
** Set CAN bus bit timing
*/
result = tdrv011SetBitTiming (

hdl,
2, /* channel */
TDRV011_100KBIT, /* 100kbits */
0); /* single sample point */

if (result != TDRV011_OK)
{

/* handle error */
}

TDRV011-SW-65 – Windows Device Driver Page 30 of 51

RETURN VALUE

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV011_ERR_INVALID_HANDLE Invalid TDRV011 Device Handle specified
TDRV011_ERR_INVAL A buffer pointer is NULL, or specified value contains

an invalid value.
TDRV011_ERR_INUSE The channel must be stopped (BUS OFF) state to

change the bit timing.
Other returned error codes are system error conditions.

TDRV011-SW-65 – Windows Device Driver Page 31 of 51

4.2.7 tdrv011Start

NAME

tdrv011Start – set controller online (BUS ON)

SYNOPSIS

TDRV011_STATUS tdrv011Start
(

TDRV011_HANDLE hdl,
int canChannel

)

DESCRIPTION

This function starts setting the specified CAN controller into the BUS ON state. After entering BUS ON
the controller is able to receive and transmit messages.

After an abnormal rate of occurrences of errors on the CAN bus, the CAN controller enters the
BUS OFF state. This I/O control function resets the init bit in the Control register. The CAN controller
begins the bus recovery sequence. The bus recovery sequence resets transmit and receive error
counters. If the CAN controller counts 128 packets of 11 consecutive recessive bits on the CAN bus,
the BUS OFF state is exited

Before the CAN controller can communicate over the CAN Bus after driver start-up or a
previous BUS OFF error condition this control function must be executed.

PARAMETERS

hdl
This argument specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

canChannel
This argument specifies the CAN channel that should be set BUS ON. Channel numbers are
starting with 0 for the 1st channel on a TDRV011 device, 1 for the 2nd channel on a TDRV011
device and so on. The last valid channel number depends on the installed module type.

TDRV011-SW-65 – Windows Device Driver Page 32 of 51

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;
int result;

/*
** Get channel 0 into BUS ON state
*/
result = tdrv011Start (hdl,

0); /* channel */
if (result != TDRV011_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV011_ERR_INVALID_HANDLE Invalid TDRV011 Device Handle specified
TDRV011_ERR_INVAL A buffer pointer is NULL, or specified value contains

an invalid value.
Other returned error codes are system error conditions.

TDRV011-SW-65 – Windows Device Driver Page 33 of 51

4.2.8 tdrv011Stop

NAME

tdrv011Stop – set controller offline (BUS OFF)

SYNOPSIS

TDRV011_STATUS tdrv011Stop
(

TDRV011_HANDLE hdl,
int canChannel

)

DESCRIPTION

This function sets the specified CAN controller into the BUS OFF state. The controller will stop
execution of transmitting and receiving messages.

PARAMETERS

hdl
This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

canChannel
This argument specifies the CAN channel that should be set BUS OFF. Channel numbers are
starting with 0 for the 1st channel on a TDRV011 device, 1 for the 2nd channel on a TDRV011
device and so on. The last valid channel number depends on the installed module type.

EXAMPLE

#include “tdrv011api.h”
TDRV011_HANDLE hdl;
int result;

/*
** Get channel 0 into BUS OFF state
*/
result = tdrv011Stop (hdl,

0); /* channel */
if (result != TDRV011_OK)
{

/* handle error */
}

TDRV011-SW-65 – Windows Device Driver Page 34 of 51

RETURN VALUE

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV011_ERR_INVALID_HANDLE Invalid TDRV011 Device Handle specified
TDRV011_ERR_INVAL A buffer pointer is NULL, or specified value contains

an invalid value.
Other returned error codes are system error conditions.

TDRV011-SW-65 – Windows Device Driver Page 35 of 51

4.2.9 tdrv011DefineReceiveMsgObj

NAME

tdrv011DefineReceiveMsgObj – define a message object for receive

SYNOPSIS

TDRV011_STATUS tdrv011DefineReceiveMsgObj
(

TDRV011_HANDLE hdl,
int canChannel,
int msgObjNumber,
unsigned int identifier,
unsigned int flags,
int rcvMsgQueueNumber

)

DESCRIPTION

This function sets up a free controller message object to receive CAN messages with a specified
identifier and assigns a queue where the received messages will be buffered.

Before the driver can receive CAN messages it is necessary to define at least one receive
message object. If only one receive message object is defined at all, preferably message object
15 should be used because only this message object is double-buffered.

PARAMETERS

hdl
This argument specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

canChannel
This argument specifies the CAN channel number for which the message object shall be
defined. Channel numbers are starting with 0 for the 1st channel on a TDRV011 device, 1 for the
2nd channel on a TDRV011 device and so on. The last valid channel number depends on the
installed module type.

msgObjNumber
This argument contains the number of the message object to define. Valid numbers are in the
range between 1 and 15 with exception of the number of the default transmit object (usually 1).

TDRV011-SW-65 – Windows Device Driver Page 36 of 51

identifier
This argument specifies the message identifier that should be received by this message object.
Depending on the acceptance filter configuration this initial message identifier value may be
changed by other accepted messages with different identifiers. This may cause confusion after
changing the acceptance filter masks without redefining the receive message objects.

flags
This argument specifies if the message object shall accept standard or extended CAN message
frames. The following flags may be set:
Value Description
TDRV011_STANDARD_IDENTIFIER Set if the message object shall accept standard CAN

message frames.
TDRV011_EXTENDED_IDENTIFIER Set if the message object shall accept extended CAN

message frames.

rcvMsgQueueNumber
This argument specifies the connected receive message queue. All received messages of the
specified message object will be transferred into the specified queue and can read by
tdrv011read() and tdrv011readNoWait() by specifying this rcvMsgQueueNumber.

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;
int result;

/*
** Define message object 15 to receive extended messages with the
** specified identifier
*/
result = tdrv011DefineReceiveMsgObj (

hdl,
2, /* channel */
15, /* message object 15 */
1234, /* message identifier */
TDRV011_EXTENDED_IDENTIFIER,
1); /* receive queue */

if (result != TDRV011_OK)
{

/* handle error */
}

TDRV011-SW-65 – Windows Device Driver Page 37 of 51

RETURN VALUE

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV011_ERR_INVALID_HANDLE Invalid TDRV011 Device Handle specified
TDRV011_ERR_INVAL A buffer pointer is NULL, or specified value contains

an invalid value.
TDRV011_ERR_BUSY The specified message object is already in use.
Other returned error codes are system error conditions.

TDRV011-SW-65 – Windows Device Driver Page 38 of 51

4.2.10 tdrv011DefineRemoteMsgObj

NAME

tdrv011DefineRemoteMsgObj – define a remote message object

SYNOPSIS

TDRV011_STATUS tdrv011DefineRemoteMsgObj
(

TDRV011_HANDLE hdl,
int canChannel,
int msgObjNumber,
unsigned int identifier,
unsigned int extMsgFlag,
int length,
unsigned char *pData

)

DESCRIPTION

This function defines a remote transmission CAN message buffer object. A remote transmission object
is similar to normal transmission object, except the CAN message is only transmitted after receipt of a
remote frame with the specified identifier.

This type of message object can be used to make process data available for other nodes which can
be polled around the CAN bus without any action of the provider node.

PARAMETERS

hdl
This argument specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

canChannel
This argument specifies the CAN channel number on which the message object shall be define.
Channel numbers are starting with 0 for the 1st channel on a TDRV011 device, 1 for the 2nd
channel on a TDRV011 device and so on. The last valid channel number depends on the
installed module type.

msgObjNumber
This argument contains the number of the message object to define. Valid numbers are in the
range between 1 and 14 with exception of the number of the default transmit object (usually 1).
Keep in mind that message object 15 is available only for receive message objects.

identifier
This argument specifies the message identifier for this message object.

TDRV011-SW-65 – Windows Device Driver Page 39 of 51

extMsgFlag
This argument specifies if the message object shall handle standard or extended CAN message
frames. The following flags may be set:
Value Description
TDRV011_STANDARD_IDENTIFIER Set if the message object shall handle standard CAN

message frames.
TDRV011_EXTENDED_IDENTIFIER Set if the message object shall handle extended CAN

message frames.

length
Specifies the number of valid data bytes stored in pData. The maximum data length is 8.

pData
This argument points to a buffer that contains the message data, which will be send on request.
Data[0] contains message Data 0, Data[1] contains message Data 1 and so on.

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;
int result;

/*
** Define a remote message object that answers to standard identifier 66
*/
result = tdrv011DefineRemoteMsgObj (

hdl,
0, /* channel */
6, /* message object 6 */
66, /* message identifier */
TDRV011_STANDARD_IDENTIFIER,
5, /* message data length */
“Hello”); /* message data */

if (result != TDRV011_OK)
{

/* handle error */
}

TDRV011-SW-65 – Windows Device Driver Page 40 of 51

RETURN VALUE

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV011_ERR_INVALID_HANDLE Invalid TDRV011 Device Handle specified
TDRV011_ERR_INVAL A buffer pointer is NULL, or specified value contains

an invalid value.
TDRV011_ERR_BUSY The specified message object is already in use.
Other returned error codes are system error conditions.

TDRV011-SW-65 – Windows Device Driver Page 41 of 51

4.2.11 tdrv011UpdateRemoteMsgObj

NAME

tdrv011UpdateRemoteMsgObj – update a remote message object

SYNOPSIS

TDRV011_STATUS tdrv011UpdateRemoteMsgObj
(

TDRV011_HANDLE hdl,
int canChannel,
int msgObjNumber,
int length,
unsigned char *pData

)

DESCRIPTION

This function updates a former defined remote transmission CAN message buffer object. The function
updates message data and length.

PARAMETERS

hdl
This argument specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

canChannel
This argument specifies the CAN channel number on which the message object shall be
updated. Channel numbers are starting with 0 for the 1st channel on a TDRV011 device, 1 for
the 2nd channel on a TDRV011 device and so on. The last valid channel number depends on
the installed module type.

msgObjNumber
This argument contains the number of the message object to update. Valid numbers are in the
range between 1 and 14 with exception of the number of the default transmit object (usually 1).
Keep in mind that message object 15 is available only for receive message objects.

length
This argument specifies the number of valid data bytes stored in pData. The maximum data
length is 8.

pData
This argument points to a buffer that contains the message data, which will be send on request.
Data[0] contains message Data 0, Data[1] contains message Data 1 and so on.

TDRV011-SW-65 – Windows Device Driver Page 42 of 51

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;
int result;

/*
** Updates message data of a remote message object
*/
result = tdrv011UpdateRemoteMsgObj (

hdl,
0, /* channel */
6, /* message object 6 */
8, /* message data length */
“NewData”); /* message data */

if (result != TDRV011_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV011_ERR_INVALID_HANDLE Invalid TDRV011 Device Handle specified
TDRV011_ERR_INVAL A buffer pointer is NULL, or specified value contains

an invalid value.
Other returned error codes are system error conditions.

TDRV011-SW-65 – Windows Device Driver Page 43 of 51

4.2.12 tdrv011UpdateReceiveMsgObj

NAME

tdrv011UpdateReceiveMsgObj – update a receive message object (send a remote frame)

SYNOPSIS

TDRV011_STATUS tdrv011UpdateReceiveMsgObj
(

TDRV011_HANDLE hdl,
int canChannel,
int msgObjNumber,
int length

)

DESCRIPTION

This function updates a former defined receive CAN message buffer object. When updating a receive
message object the controller transmits a remote frame to the CAN bus. Other nodes may answer to
the remote frame and send a CAN message which will be received like a normal CAN message.

PARAMETERS

hdl
This argument specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

canChannel
This argument specifies the CAN channel number on which the message object to be updated.
Channel numbers are starting with 0 for the 1st channel on a TDRV011 device, 1 for the 2nd
channel on a TDRV011 device and so on. The last valid channel number depends on the
installed module type.

msgObjNumber
This argument contains the number of the message object to update. Valid numbers are in the
range between 1 and 15 with exception of the number of the default transmit object (usually 1).

length
This argument specifies the length of the requested data. The TDRV011 inserts the specified
length into the remote frame. The information may be used by the remote node.

TDRV011-SW-65 – Windows Device Driver Page 44 of 51

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;
int result;

/*
** Send a remote frame from message object 3 (previously defined)
*/
result = tdrv011UpdateReceiveMsgObj (hdl,

0, /* channel */
3, /* message object 3 */
6); /* request 6 databyte */

if (result != TDRV011_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV011_ERR_INVALID_HANDLE Invalid TDRV011 Device Handle specified
TDRV011_ERR_INVAL Invalid value specified.
Other returned error codes are system error conditions.

TDRV011-SW-65 – Windows Device Driver Page 45 of 51

4.2.13 tdrv011ReleaseMsgObj

NAME

tdrv011ReleaseMsgObj – release a message object

SYNOPSIS

TDRV011_STATUS tdrv011ReleaseMsgObj
(

TDRV011_HANDLE hdl,
int canChannel,
int msgObjNumber

)

DESCRIPTION

This function releases a previously defined CAN message object. Any CAN bus transactions of the
specified message object will be disabled.

PARAMETERS

hdl
This argument specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

canChannel
This argument specifies the CAN channel number on which the message object shall be
released. Channel numbers are starting with 0 for the 1st channel on a TDRV011 device, 1 for
the 2nd channel on a TDRV011 device and so on. The last valid channel number depends on
the installed module type.

msgObjNumber
This argument contains the number of the message object to release. Valid numbers are in the
range between 1 and 15 with exception of the number of the default transmit object (usually 1).

TDRV011-SW-65 – Windows Device Driver Page 46 of 51

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;
int result;

/*
** Release message object 6 (previously defined)
*/
result = tdrv011ReleaseMsgObj (hdl,

0, /* channel */
6); /* message object 6 */

if (result != TDRV011_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV011_ERR_INVALID_HANDLE Invalid TDRV011 Device Handle specified
TDRV011_ERR_INVAL A buffer pointer is NULL, or specified value contains

an invalid value.
Other returned error codes are system error conditions.

TDRV011-SW-65 – Windows Device Driver Page 47 of 51

4.2.14 tdrv011FlushReceiveFifo

NAME

tdrv011FlushReceiveFifo – flush receive message queue(s)

SYNOPSIS

TDRV011_STATUS tdrv011FlushReceiveFifo
(

TDRV011_HANDLE hdl,
int canChannel,
int rcvQueue

)

DESCRIPTION

This function flushes the specified receive message queue.

PARAMETERS

hdl
This argument specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

canChannel
This argument specifies the CAN channel number the specified receive queue is assigned to.
Channel numbers are starting with 0 for the 1st channel on a TDRV011 device, 1 for the 2nd
channel on a TDRV011 device and so on. The last valid channel number depends on the
installed module type.

rcvQueue
This argument specifies the receive message queue which shall be flushed. Valid queue
numbers are 1 up to the configured maximum. If rcvQueue is set to 0 all receive queues on the
channel are flushed.

TDRV011-SW-65 – Windows Device Driver Page 48 of 51

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;
int result;

/*
** Flush receive message queue 1 of channel 0
*/
result = tdrv011FlushReceiveFifo (hdl,

0, /* channel */
1); /* receive queue 1 */

if (result != TDRV011_OK)
{

/* handle error */
}

…

/*
** Flush all receive message queues of channel 1
*/
result = tdrv011FlushReceiveFifo (hdl,

1, /* channel */
0); /* all receive queues */

if (result != TDRV011_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV011_ERR_INVALID_HANDLE Invalid TDRV011 Device Handle specified
TDRV011_ERR_INVAL A buffer pointer is NULL, or specified value contains

an invalid value.
Other returned error codes are system error conditions.

TDRV011-SW-65 – Windows Device Driver Page 49 of 51

4.2.15 tdrv011GetControllerStatus

NAME

tdrv011GetControllerStatus – get controller status

SYNOPSIS

TDRV011_STATUS tdrv011GetControllerStatus
(

TDRV011_HANDLE hdl,
int canChannel,
unsigned char *pCanStatus

)

DESCRIPTION

This function reads the current state of the CAN controller status register for diagnostic purpose.

PARAMETERS

hdl
This argument specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

canChannel
This argument specifies the CAN channel number where the controller status shall be read
from. Channel numbers are starting with 0 for the 1st channel on a TDRV011 device, 1 for the
2nd channel on a TDRV011 device and so on. The last valid channel number depends on the
installed module type.

pCanStatus
This argument is a pointer to an unsigned char variable where the status will be stored in. The
status represents the value of the controller status register. The content is described in the Intel
82527 Architectural Overview.

TDRV011-SW-65 – Windows Device Driver Page 50 of 51

EXAMPLE

#include “tdrv011api.h”

TDRV011_HANDLE hdl;
int result;
unsigned char contStat;

/*
** Read CAN controller status of channel 0
*/
result = tdrv011GetControllerStatus (hdl,

0, /* channel */
&contStat);

if (result != TDRV011_OK)
{

/* handle error */
}
else
{

printf(“CAN-Controller Status: 0x%02X\n”, contStat);
}

RETURN VALUE

On success, TDRV011_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV011_ERR_INVALID_HANDLE Invalid TDRV011 Device Handle specified
TDRV011_ERR_INVAL A buffer pointer is NULL, or specified value contains

an invalid value.
Other returned error codes are system error conditions.

TDRV011-SW-65 – Windows Device Driver Page 51 of 51

5 Appendix
Step by Step Initialization5.1

5.1.1 Transmit and Receive Messages
This chapter gives an overview over the necessary steps of starting a CAN channel.

1. Configure bit timing - tdrv011SetBitTiming()

2. Configure Acceptance Masks - tdrv011SetFilter()

3. Define receive message objects – tdrv011DefineReceiveMsgObj()

4. Start CAN controller operation – tdrv011Start()

The channel can now be used to receive and transmit messages

5.1.2 Answer to Remote Frames
This chapter gives an overview over the necessary steps of setting up a transmit remote message
object answering on remote frames.

1. Configure bit timing - tdrv011SetBitTiming()

2. Configure Acceptance Masks - tdrv011SetFilter()

3. Define remote message objects – tdrv011DefineRemoteMsgObj()

4. Start CAN controller operation – tdrv011Start()

The channel will now answer to remote frames (with matching identifiers).

5. Update remote objects to provide new data - tdrv011UpdateRemoteMsgObj()

5.1.3 Request Remote Messages
This chapter gives an overview over the necessary steps of starting a CAN channel requesting remote
frames and reading the requested data.

1. Configure bit timing - tdrv011SetBitTiming()

2. Configure Acceptance Masks - tdrv011SetFilter()

3. Define receive message object – tdrv011DefineReceiveMsgObj()

4. Start CAN controller operation – tdrv011Start()

The channel will now answer to remote frames (with matching identifiers).

5. Request remote message – tdrv011UpdateReceiveMsgObj()

6. Read received remote message – tdrv011Read()

