
The Embedded I/O Company

TDRV008-SW-42
VxWorks Device Driver

3x16bit I/O Ports with 512 Word FIFO and Handshake

Version 2.0.x

User Manual
Issue 2.0.0

September 2011

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany

Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com www.tews.com

TDRV008-SW-42 – VxWorks Device Driver Page 2 of 36

TDRV008-SW-42
VxWorks Device Driver

3x16bit I/O Ports with 512 Word FIFO and
Handshake

Supported Modules:

TPMC682
TPMC680-50

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2005-2011 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0.0 First Issue April 11, 2005
2.0.0 VxBus Support added, API Documentation added, new File List,

IO-Interface Chapter removed
September 28, 2011

TDRV008-SW-42 – VxWorks Device Driver Page 3 of 36

Table of Contents
1 INTRODUCTION... 4

1.1 Device Driver ...4
2 INSTALLATION.. 5

2.1 Legacy vs. VxBus Driver ..6
2.2 VxBus Driver Installation ...6

2.2.1 Direct BSP Builds...7
2.3 Legacy Driver Installation ..8

2.3.1 Include Device Driver in VxWorks Projects..8
2.3.2 Special Installation for Intel x86 based Targets ...8
2.3.3 BSP Dependent Adjustments ..9
2.3.4 System Resource Requirement ...10

3 API DOCUMENTATION ... 11
3.1 General Functions...11

3.1.1 tdrv008Open ..11
3.1.2 tdrv008Close ..13

3.2 Device Access Functions...15
3.2.1 tdrv008WriteBuffer ...15
3.2.2 tdrv008ReadBuffer ...18
3.2.3 tdrv008GetPort...21
3.2.4 tdrv008SetPort ...23
3.2.5 tdrv008ConfigurePort ...25
3.2.6 tdrv008FlushFifos...27

4 LEGACY I/O SYSTEM FUNCTIONS.. 29
4.1 tdrv008Drv ...29
4.2 tdrv008DevCreate..31
4.3 tdrv008PciInit...34
4.4 tdrv008Init ..35

TDRV008-SW-42 – VxWorks Device Driver Page 4 of 36

1 Introduction
1.1 Device Driver

The TDRV008-SW-42 VxWorks device driver software allows the operation of the TDRV008
compatible PMC conforming to the VxWorks I/O system specification.

The TDRV008-SW-42 release contains independent driver sources for the old legacy (pre-VxBus) and
the new VxBus-enabled driver model. The VxBus-enabled driver is recommended for new
developments with later VxWorks 6.x release and mandatory for VxWorks SMP systems.

Both drivers, legacy and VxBus, share the same application programming interface (API) and device-
independent basic I/O interface with open(), close() and ioctl() functions. The basic I/O interface is only
for backward compatibility with existing applications and should not be used for new developments.

Both drivers invoke a mutual exclusion and binary semaphore mechanism to prevent simultaneous
requests by multiple tasks from interfering with each other.

To prevent the application program from losing data, incoming messages will be stored in a message
FIFO with a depth of 100 messages.

The TDRV008-SW-42 device driver supports the following features:

buffered reading and writing data to handshake ports
configuration of handshake ports
flushing all FIFOs of a module
setting value of output port 5
reading value from input port 4

The TDRV008-SW-42 supports the modules listed below:

TPMC682 3 x 16 bit I/O Ports with 512 Word FIFO and Handshake (PMC)
TPMC680-50 3 x 16 bit I/O Ports with 512 Word FIFO and Handshake (PMC)

In this document all supported modules and devices will be called TDRV008. Specials for
certain devices will be advised.

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TPMC682/TPMC680-50 User Manual
TPMC682/TPMC680-50 Engineering Manual

TDRV008-SW-42 – VxWorks Device Driver Page 5 of 36

2 Installation
Following files are located on the distribution media:

Directory path ‘TDRV008-SW-42’:

TDRV008-SW-42-2.0.0.pdf PDF copy of this manual
TDRV008-SW-42-VXBUS.zip Zip compressed archive with VxBus driver sources
TDRV008-SW-42-LEGACY.zip Zip compressed archive with legacy driver sources
ChangeLog.txt Release history
Release.txt Release information

The archive TDRV008-SW-42-VXBUS.zip contains the following files and directories:

Directory path ‘./tews/tdrv008’:

tdrv008drv.c TDRV008 device driver source
tdrv008def.h TDRV008 driver include file
tdrv008.h TDRV008 include file for driver and application
tdrv008api.c TDRV008 API file
Makefile Driver Makefile
40tdrv008.cdf Component description file for VxWorks development tools
tdrv008.dc Configuration stub file for direct BSP builds
tdrv008.dr Configuration stub file for direct BSP builds
include/tvxbHal.h Hardware dependent interface functions and definitions
apps/tdrv008exa.c Example application

The archive TDRV008-SW-42-LEGACY.zip contains the following files and directories:

Directory path ‘./tdrv008’:

tdrv008drv.c TDRV008 device driver source
tdrv008def.h TDRV008 driver include file
tdrv008.h TDRV008 include file for driver and application
tdrv008pci.c TDRV008 device driver source for x86 based systems
tdrv008api.c TDRV008 API file
tdrv008exa.c Example application
include/tdhal.h Hardware dependent interface functions and definitions

TDRV008-SW-42 – VxWorks Device Driver Page 6 of 36

2.1 Legacy vs. VxBus Driver
In later VxWorks 6.x releases, the old VxWorks 5.x legacy device driver model was replaced by
VxBus-enabled device drivers. Legacy device drivers are tightly coupled with the BSP and the board
hardware. The VxBus infrastructure hides all BSP and hardware differences under a well defined
interface, which improves the portability and reduces the configuration effort. A further advantage is
the improved performance of API calls by using the method interface and bypassing the VxWorks
basic I/O interface.

VxBus-enabled device drivers are the preferred driver interface for new developments.

The checklist below will help you to make a decision which driver model is suitable and possible for
your application:

Legacy Driver VxBus Driver

VxWorks 5.x releases

VxWorks 6.5 and earlier
releases

VxWorks 6.x releases without
VxBus PCI bus support

VxWorks 6.6 and later releases
with VxBus PCI bus

SMP systems (only the VxBus
driver is SMP safe!)

TEWS TECHNOLOGIES recommends not using the VxBus Driver before VxWorks release 6.6.
In previous releases required header files are missing and the support for 3rd-party drivers may
not be available.

2.2 VxBus Driver Installation
Because Wind River doesn’t provide a standard installation method for 3rd party VxBus device drivers
the installation procedure needs to be done manually.

In order to perform a manual installation extract all files from the archive TDRV008-SW-42-VXBUS.zip
to the typical 3rd party directory installDir/vxworks-6.x/target/3rdparty (whereas installDir must be
substituted by the VxWorks installation directory).

After successful installation the TDRV008 device driver is located in the vendor and driver-specific
directory installDir/vxworks-6.x/target/3rdparty/tews/tdrv008.

At this point the TDRV008 driver is not configurable and cannot be included with the kernel
configuration tool in a Wind River Workbench project. To make the driver configurable the driver library
for the desired processor (CPU) and build tool (TOOL) must be built in the following way:

(1) Open a VxWorks development shell (e.g. C:\WindRiver\wrenv.exe -p vxworks-6.7)

(2) Change into the driver installation directory
installDir/vxworks-6.x/target/3rdparty/tews/tdrv008

(3) Invoke the build command for the required processor and build tool
make CPU=cpuName TOOL=tool

TDRV008-SW-42 – VxWorks Device Driver Page 7 of 36

For Windows hosts this may look like this:

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tdrv008
C:> make CPU=PENTIUM4 TOOL=diab

To compile SMP-enabled libraries, the argument VXBUILD=SMP must be added to the command line

C:> make CPU=PENTIUM4 TOOL=diab VXBUILD=SMP

To integrate the TDRV008 driver with the VxWorks development tools (Workbench), the component
configuration file 40tdrv008.cdf must be copied to the directory
installDir/vxworks-6.x/target/config/comps/VxWorks.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tdrv008
C:> copy 40tdrv008.cdf \Windriver\vxworks-6.7\target\config\comps\vxWorks

In VxWorks 6.7 and newer releases the kernel configuration tool scans the CDF file automatically and
updates the CxrCat.txt cache file to provide component parameter information for the kernel
configuration tool as long as the timestamp of the copied CDF file is newer than the one of the
CxrCat.txt. If your copy command preserves the timestamp, force to update the timestamp by a utility,
such as touch.

In earlier VxWorks releases the CxrCat.txt file may not be updated automatically. In this case, remove
or rename the original CxrCat.txt file and invoke the make command to force recreation of this file.

C:> cd \Windriver\vxworks-6.7\target\config\comps\vxWorks
C:> del CxrCat.txt
C:> make

After successful completion of all steps above and restart of the Wind River Workbench, the TDRV008
driver and API can be included in VxWorks projects by selecting the “TEWS TDRV008 Driver“ and
“TEWS TDRV008 API” components in the “hardware (default) - Device Drivers” folder with the kernel
configuration tool.

2.2.1 Direct BSP Builds
In development scenarios with the direct BSP build method without using the Workbench or the vxprj
command-line utility, the TDRV008 configuration stub files must be copied to the directory
installDir/vxworks-6.x/target/config/comps/src/hwif. Afterwards the vxbUsrCmdLine.c file must be
updated by invoking the appropriate make command.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tdrv008
C:> copy tdrv008.dc \Windriver\vxworks-6.7\target\config\comps\src\hwif
C:> copy tdrv008.dr \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> cd \WindRiver\vxworks-6.7\target\config\comps\src\hwif
C:> make vxbUsrCmdLine.c

TDRV008-SW-42 – VxWorks Device Driver Page 8 of 36

2.3 Legacy Driver Installation

2.3.1 Include Device Driver in VxWorks Projects
For including the TDRV008-SW-42 device driver into a VxWorks project (e.g. Tornado IDE or
Workbench) follow the steps below:

(1) Extract all files from the archive TDRV008-SW-42-LEGACY.zip to your project directory.

(2) Add the device drivers C-files to your project.
Make a right click to your project in the ‘Workspace’ window and use the ‘Add Files ...’ topic.
A file select box appears, and the driver files in the tdrv008 directory can be selected.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your VxWorks User’s
Guide (e.g. Tornado, Workbench, etc.)

2.3.2 Special Installation for Intel x86 based Targets
The TDRV008 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU_FAMILY. If the content of this macro is equal to I80X86 special Intel x86 conforming code and
function calls will be included.

The second problem for Intel x86 based platforms can’t be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’t map PCI memory spaces of devices
which are not used by the BSP, the required device memory spaces can’t be accessed.

To solve this problem a MMU mapping entry has to be added for the required TDRV008 PCI memory
spaces prior the MMU initialization (usrMmuInit()) is done.

The C source file tdrv008pci.c contains the function tdrv008PciInit(). This routine finds out all
TDRV008 devices and adds MMU mapping entries for all used PCI memory spaces. Please insert a
call to this function after the PCI initialization is done and prior to MMU initialization (usrMmuInit()).

The right place to call the function tdrv008PciInit() is at the end of the function sysHwInit() in sysLib.c
(it can be opened from the project Files window):

tdrv008PciInit();

Be sure that the function is called prior to MMU initialization otherwise the TDRV008 PCI spaces
remains unmapped and an access fault occurs during driver initialization.

Modifying the sysLib.c file will change the sysLib.c in the BSP path. Remember this for future
projects and recompilations.

TDRV008-SW-42 – VxWorks Device Driver Page 9 of 36

2.3.3 BSP Dependent Adjustments
The driver includes a file called include/tdhal.h which contains functions and definitions for BSP
adaptation. It may be necessary to modify them for BSP specific settings. Most settings can be made
automatically by conditional compilation set by the BSP header files, but some settings must be
configured manually. There are two way of modification, first you can change the include/tdhal.h and
define the corresponding definition and its value, or you can do it, using the command line option –D.

There are 3 offset definitions (USERDEFINED_MEM_OFFSET, USERDEFINED_IO_OFFSET, and
USERDEFINED_LEV2VEC) that must be configured if a corresponding warning message appears
during compilation. These definitions always need values. Definition values can be assigned by
command line option -D<definition>=<value>.

Definition Description
USERDEFINED_MEM_OFFSET The value of this definition must be set to the offset

between CPU-Bus and PCI-Bus Address for PCI
memory space access

USERDEFINED_IO_OFFSET The value of this definition must be set to the offset
between CPU-Bus and PCI-Bus Address for PCI I/O
space access

USERDEFINED_LEV2VEC The value of this definition must be set to the
difference of the interrupt vector (used to connect the
ISR) and the interrupt level (stored to the PCI header)

Another definition allows a simple adaptation for BSPs that utilize a pciIntConnect() function to
connect shared (PCI) interrupts. If this function is defined in the used BSP, the definition of
USERDEFINED_SEL_PCIINTCONNECT should be enabled. The definition by command line option is
made by -D<definition>.

Please refer to the BSP documentation and header files to get information about the interrupt
connection function and the required offset values.

TDRV008-SW-42 – VxWorks Device Driver Page 10 of 36

2.3.4 System Resource Requirement
The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement
Memory < 1 KB < 1 KB
Stack < 1 KB ---

Semaphores --- 3

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TDRV008-SW-42 – VxWorks Device Driver Page 11 of 36

3 API Documentation
3.1 General Functions

3.1.1 tdrv008Open

NAME

tdrv008Open – opens a device.

SYNOPSIS

TDRV008_HANDLE tdrv008Open
(

char *DeviceName
)

DESCRIPTION

Before I/O can be performed to a device, a device descriptor must be opened by a call to this function.

PARAMETERS

DeviceName
This parameter points to a null-terminated string that specifies the name of the device. The first
TDRV008 device is named “/tdrv008/0”, the second device is named “/tdrv008/1”, and so on.

EXAMPLE

#include “tdrv008api.h”

TDRV008_HANDLE hdl;

/*
** open the specified device
*/
hdl = tdrv008Open(“/tdrv008/0”);
if (hdl == NULL)
{

/* handle open error */
}

TDRV008-SW-42 – VxWorks Device Driver Page 12 of 36

RETURNS

A device handle or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TDRV008-SW-42 – VxWorks Device Driver Page 13 of 36

3.1.2 tdrv008Close

NAME

tdrv008Close – closes a device.

SYNOPSIS

TDRV008_STATUS tdrv008Close
(

TDRV008_HANDLE hdl
)

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tdrv008api.h”

TDRV008_HANDLE hdl;
TDRV008_STATUS result;

/*
** close the device
*/
result = tdrv008Close(hdl);
if (result != TDRV008_OK)
{

/* handle close error */
}

TDRV008-SW-42 – VxWorks Device Driver Page 14 of 36

RETURNS

On success, TDRV008_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV008_ERR_INVALID_HANDLE The device handle is invalid

TDRV008-SW-42 – VxWorks Device Driver Page 15 of 36

3.2 Device Access Functions

3.2.1 tdrv008WriteBuffer

NAME

tdrv008WriteBuffer – send data from buffer to port

SYNOPSIS

TDRV008_STATUS tdrv008WriteBuffer
(

TDRV008_HANDLE hdl,
unsigned int portNo,
unsigned short *buffer,
unsigned int bufferSize,
unsigned int *transmittedData,
int timeout

)

DESCRIPTION

This function sends the content of a data buffer to the specified port. The data-words from the buffer
will be transferred into the port’s FIFO. The function returns if the last data-word is moved to the FIFO
or the timeout occurs.

PARAMETERS

hdl
This parameter specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port that shall be used. Allowed values are 0...2.

buffer
This argument points to a buffer where the data-words are stored that shall be transmitted.

bufferSize
This argument specifies the number of data values in the buffer. This is the amount of data-
words that will be sent.

TDRV008-SW-42 – VxWorks Device Driver Page 16 of 36

transmittedData
This argument points to an unsigned int value where the number of transferred data-words will
be returned. This value may be helpful if a timeout occurs.

timeout
This argument specifies the maximum time the function will try to transfer data-words into the
port’s FIFO. The time must be specified in milliseconds. A value of ‘-1’ specifies that the function
shall never timeout.

EXAMPLE

#include “tdrv008api.h”

TDRV008_HANDLE hdl;
TDRV008_STATUS result;
unsigned int transferred;
unsigned short buffer[10] = {0x0000 ,0x1111, 0x2222, 0x3333, 0x4444,

0x5555, 0x6666, 0x7777, 0x8888, 0x9999};

/*
** send 10 data-words via port 2
** (timeout after 1000ms)
*/
result = tdrv008WriteBuffer(hdl, 2, buffer, 10, &transferred, 1000);
if (result != TDRV008_OK)
{

if (result == TDRV008_ERR_TIMEOUT)
{ /* just a timeout !!! */

printf(“%d data-words sent\n”, transferred);
}
else
{

/* handle error */
}

}
else
{

printf(“All data sent\n”);
}

TDRV008-SW-42 – VxWorks Device Driver Page 17 of 36

RETURN VALUE

On success, TDRV008_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV008_ERR_INVALID_HANDLE The device handle is invalid
TDRV008_ERR_INVAL A NULL pointer or invalid value is referenced for an

input value
TDRV008_ERR_INVALDIR Port is configured for input
TDRV008_ERR_BUSY The port is busy
TDRV008_ERR_TIMEOUT The transfer timed out, the specified time has passed

TDRV008-SW-42 – VxWorks Device Driver Page 18 of 36

3.2.2 tdrv008ReadBuffer

NAME

tdrv008ReadBuffer – receive data from a specified port

SYNOPSIS

TDRV008_STATUS tdrv008ReadBuffer
(

TDRV008_HANDLE hdl,
unsigned int portNo,
unsigned short *buffer,
unsigned int bufferSize,
unsigned int *validData,
int timeout

)

DESCRIPTION

This function receives data from a specified port. The data-words received on the specified port will be
transferred from the port’s FIFO into the specified buffer. The function returns if the buffer is filled
completely or the timeout occurs.

PARAMETERS

hdl
This parameter specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port that shall be used. Allowed values are 0...2.

buffer
This argument points to a buffer where the received data-words shall be stored.

bufferSize
This argument specifies the size of the buffer. This is the maximum amount of data-words that
will be returned.

validData
This argument points to an unsigned int value which returns the number of data words received
and stored in the specified buffer.

TDRV008-SW-42 – VxWorks Device Driver Page 19 of 36

timeout
This argument specifies the maximum time the function will try to read data-words from the
ports FIFO. The time must be specified in milliseconds. A value of ‘-1’ specifies that the function
shall never timeout. A value of ‘0’ specifies that the function shall read all data that is currently
stored in the port’s FIFO, but the function will not wait for further incoming data.

EXAMPLE

#include “tdrv008api.h”

TDRV008_HANDLE hdl;
TDRV008_STATUS result;
unsigned int received;
unsigned short buffer[50];
int i;

/*
** read data from port 0 (max. 50 data words)
** (timeout after 5000ms)
*/
result = tdrv008ReadBuffer(hdl, 0, buffer, 50, &received, 5000);
if (result != TDRV008_OK)
{

if (result == TDRV008_ERR_TIMEOUT)
{ /* just a timeout !!! */
}
else
{

/* handle error */
received = 0;

}
}

printf(“%d data-words received\n”, received);
for (i = 0; i < received; i++)
{

printf(“ data[%d] = 0x%x\n”, i, buffer[i]);
}

TDRV008-SW-42 – VxWorks Device Driver Page 20 of 36

RETURN VALUE

On success, TDRV008_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV008_ERR_INVALID_HANDLE The device handle is invalid
TDRV008_ERR_INVAL A NULL pointer or invalid value is referenced for an

input value
TDRV008_ERR_INVALDIR Port is configured for output
TDRV008_ERR_BUSY The port is busy
TDRV008_ERR_TIMEOUT The transfer timed out, the specified time has passed

TDRV008-SW-42 – VxWorks Device Driver Page 21 of 36

3.2.3 tdrv008GetPort

NAME

tdrv008GetPort – read current state of input port 4

SYNOPSIS

TDRV008_STATUS tdrv008GetPort
(

TDRV008_HANDLE hdl,
unsigned char *inValue

)

DESCRIPTION

This function reads the current state of input port 4.

PARAMETERS

hdl
This parameter specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

inValue
This argument points to an unsigned char value where the state of the input lines will be written
to. Only bits 3...7 are valid. Bits 0...2 will always be 0, these input lines are reserved for the input
handshake lines of port 0…2.

TDRV008-SW-42 – VxWorks Device Driver Page 22 of 36

EXAMPLE

#include “tdrv008api.h”

TDRV008_HANDLE hdl;
TDRV008_STATUS result;
unsigned char inPort4;

/*
** read current state of port 4
*/
result = tdrv008GetPort(hdl, &inPort4);
if (result != TDRV008_OK)
{

/* handle error */
}

printf(“Port 4 = 0x%02x \n”, inPort4);

RETURN VALUE

On success, TDRV008_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV008_ERR_INVALID_HANDLE The device handle is invalid
TDRV008_ERR_INVAL A NULL pointer or invalid value is referenced for an

input value

TDRV008-SW-42 – VxWorks Device Driver Page 23 of 36

3.2.4 tdrv008SetPort

NAME

tdrv008SetPort – set output port 5

SYNOPSIS

TDRV008_STATUS tdrv008SetPort
(

TDRV008_HANDLE hdl,
unsigned char outValue

)

DESCRIPTION

This function sets the output value of port 5.

PARAMETERS

hdl
This parameter specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

outValue
This argument specifies the new output value of port 5. Only bits 3...7 are valid. Bits 0…2 will
ignored, the output lines are reserved for the output handshake lines of port 0…2.

EXAMPLE

#include “tdrv008api.h”

TDRV008_HANDLE hdl;
TDRV008_STATUS result;

/*
** set all output lines of port 5
*/
result = tdrv008SetPort(hdl, 0xf8);
if (result != TDRV008_OK)
{

/* handle error */
}

TDRV008-SW-42 – VxWorks Device Driver Page 24 of 36

RETURN VALUE

On success, TDRV008_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV008_ERR_INVALID_HANDLE The device handle is invalid

TDRV008-SW-42 – VxWorks Device Driver Page 25 of 36

3.2.5 tdrv008ConfigurePort

NAME

tdrv008ConfigurePort – configure a handshake port

SYNOPSIS

TDRV008_STATUS tdrv008ConfigurePort
(

TDRV008_HANDLE hdl,
unsigned int portNo,
unsigned int flags,
unsigned int fifoTimeout,
unsigned int fifoThreshold

)

DESCRIPTION

This function configures the specified handshake port. It sets the direction, the handshake mode,
threshold, and if necessary the receive timeout.

PARAMETERS

hdl
This parameter specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port that shall be configured. Allowed values are 0...2.

flags
This argument specifies the mode of the port. The value must contain an ORed value of flags
described below. There must be set one flag specifying the port direction and one flag
specifying the output handshake mode. (For a more detailed description of the handshake
modes, please refer to the User Manual of the specific module.)

Port Direction Flags Description
TDRV008_CONF_PORTDIR_INPUT Configure port for data input.
TDRV008_CONF_PORTDIR_OUTPUT Configure port for data output.

Output Handshake Mode Flags Description
TDRV008_CONF_HSOUT_HSNONE No output handshake
TDRV008_CONF_HSOUT_HSINTERLOCKED Interlocked output handshake
TDRV008_CONF_HSOUT_HSPULSED Pulsed output handshake

TDRV008-SW-42 – VxWorks Device Driver Page 26 of 36

fifoTimeout
This argument specifies the hardware FIFO timeout value. The value will be directly written to
the module (TCPRx). Refer to the User Manual of your module for more information. This value
is only used for input ports.

fifoThreshold
This argument specifies the FIFO threshold value. This value will be directly written to the
module (FIFO_FTRx). Refer to the User Manual of your module for more information. This value
must be set between 1 and 512.

EXAMPLE

#include “tdrv008api.h”

TDRV008_HANDLE hdl;
TDRV008_STATUS result;

/*
** Configure port 1 for data input (interlocked)
** FIFO-Threshold: 50
** Input Timeout: 100
*/
result = tdrv008ConfigurePort (hdl,

1,
TDRV008_CONF_PORTDIR_INPUT |
TDRV008_CONF_HSOUT_HSINTERLOCKED,
100,
50);

if (result != TDRV008_OK)
{

/* handle error */
}

RETURN VALUE

On success, TDRV008_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV008_ERR_INVALID_HANDLE The device handle is invalid
TDRV008_ERR_INVAL An invalid value is referenced for an input value
TDRV008_ERR_BUSY The port is busy

TDRV008-SW-42 – VxWorks Device Driver Page 27 of 36

3.2.6 tdrv008FlushFifos

NAME

tdrv008FlushFifos – flush FIFOs of all handshake ports

SYNOPSIS

TDRV008_STATUS tdrv008 FlushFifos
(

TDRV008_HANDLE hdl
)

DESCRIPTION

This function flushes the FIFOs of all handshake ports (0…2).

PARAMETERS

hdl
This parameter specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tdrv008api.h”

TDRV008_HANDLE hdl;
TDRV008_STATUS result;

/*
** flush handshake ports
*/
result = tdrv008FlushFifos(hdl);
if (result != TDRV008_OK)
{

/* handle error */
}

TDRV008-SW-42 – VxWorks Device Driver Page 28 of 36

RETURN VALUE

On success, TDRV008_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV008_ERR_INVALID_HANDLE The device handle is invalid

TDRV008-SW-42 – VxWorks Device Driver Page 29 of 36

4 Legacy I/O System Functions
This chapter describes the legacy driver-level interface to the I/O system. The purpose of these
functions is to install the driver in the I/O system, add and initialize devices.

The legacy I/O system functions are only relevant for the legacy TDRV008 driver. For the
VxBus-enabled TDRV008 driver, the driver will be installed automatically in the I/O system and
devices will be created as needed for detected modules.

4.1 tdrv008Drv

NAME

tdrv008Drv - installs the TDRV008 driver in the I/O system

SYNOPSIS

STATUS tdrv008Drv(void)

DESCRIPTION

This function searches for devices on the PCI bus and installs the TDRV008 driver in the I/O system.

A call to this function is the first the user has to do before adding any device to the system or
performing any I/O request.

EXAMPLE

#include "tdrv008api.h”

STATUS result;

/*-------------------
Initialize Driver
-------------------*/

result = tdrv008Drv();
if (result == ERROR)
{

/* Error handling */
}

TDRV008-SW-42 – VxWorks Device Driver Page 30 of 36

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error Code Description
TDRV008_ERR_NXIO No supported device found, driver will not start

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TDRV008-SW-42 – VxWorks Device Driver Page 31 of 36

4.2 tdrv008DevCreate

NAME

tdrv008DevCreate – Add a TDRV008 device to the VxWorks system

SYNOPSIS

STATUS tdrv008DevCreate
(

char *name,
int devIdx,
int funcType,
void *pParam

)

DESCRIPTION

This routine adds the selected device to the VxWorks system. The device hardware will be setup and
prepared for use.

This function must be called before performing any I/O request to this device.

PARAMETER

name
This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devIdx
This index number specifies the device to add to the system.
The index number depends on the search priority of the modules. The modules will be searched
in the following order:

- TPMC680-50
- TPMC682-xx

If modules of the same type are installed the device numbers will be assigned in the order the
VxWorks pciFindDevice() function will find the devices.

TDRV008-SW-42 – VxWorks Device Driver Page 32 of 36

Example: A system with 1x TPMC680-50 and 2x TPMC682-10 will assign the following device
indices:

Module Device Index
TPMC680-50 0
TPMC682-10 (1st) 1
TPMC682-10 (2nd) 2

funcType
This parameter is unused and should be set to 0.

pParam
This parameter is unused and should be set to NULL.

EXAMPLE

#include "tdrv008api.h”

STATUS result;

/*---
Create the device "/tdrv008/0" for the first device
---*/

result = tdrv008DevCreate("/tdrv008/0",
0,
0,
NULL);

if (result == OK)
{

/* Device successfully created */
}
else
{

/* Error occurred when creating the device */
}

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

TDRV008-SW-42 – VxWorks Device Driver Page 33 of 36

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error Code Description
TDRV008_ERR_NXIO Driver not started, or specified device index is invalid
TDRV008_ERR_EXISTS Device already exists

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TDRV008-SW-42 – VxWorks Device Driver Page 34 of 36

4.3 tdrv008PciInit

NAME

tdrv008PciInit – Generic PCI device initialization

SYNOPSIS

void tdrv008PciInit()

DESCRIPTION

This function is only required for Intel x86 VxWorks platforms. The purpose is to setup the MMU
mapping for all required TDRV008 device PCI spaces (base address registers) and to enable the
TDRV008 device for access.

The global variable tdrv008Status obtains the result of the device initialization and can be polled later
by the application before the driver will be installed.

Value Meaning
> 0 Initialization successfully completed. The value of tdrv008Status is equal to the

number of mapped PCI spaces
0 No TDRV008 device found
< 0 Initialization failed. The value of (tdrv008Status & 0xFF) is equal to the number of

mapped spaces until the error occurs.
Possible cause: Too few entries for dynamic mappings in sysPhysMemDesc[].
Remedy: Add dummy entries as necessary (syslib.c).

EXAMPLE

extern void tdrv008PciInit();

tdrv008PciInit();

TDRV008-SW-42 – VxWorks Device Driver Page 35 of 36

4.4 tdrv008Init

NAME

tdrv008Init – initialize TDRV008 driver and devices

SYNOPSIS

STATUS tdrv008Init
(

void
)

DESCRIPTION

This function is used by the TDRV008 example application to install the driver and to add all available
devices to the VxWorks system.

See also 3.1.1 tdrv008Open for the device naming convention for legacy devices.

After calling this function it is not necessary to call tdrv008Drv() and tdrv008DevCreate()
explicitly.

EXAMPLE

#include "tdrv008.h”

STATUS result;

result = tdrv008Init();
if (result == ERROR)
{

/* Error handling */
}

TDRV008-SW-42 – VxWorks Device Driver Page 36 of 36

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

Error codes are only set by system functions. The error codes are stored in errno and can be read with
the function errnoGet().

See 4.1 tdrv008Drv and 4.2 tdrv008DevCreate for a description of possible error codes.

