
The Embedded I/O Company

TDRV008-SW-65
Windows 2000/XP Device Driver

3x 16 bit I/O Ports with 512 Word FIFO and Handshake

Version 1.0.x

User Manual
Version 1.0.0
March 2007

TEWS TECHNOLOGIES GmbH TEWS TECHNOLOGIES LLC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49-(0)4101-4058-0
Fax: +49-(0)4101-4058-19
e-mail: info@tews.com

9190 Double Diamond Parkway,
Suite 127, Reno, NV 89521, USA
www.tews.com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TDRV008-SW-65 – Windows WDM Device Driver Page 2 of 24

TDRV008-SW-65
Windows 2000/XP Device Driver

3 x 16 bit I/O Ports with 512 Word FIFO and
Handshake

Supported Hardware Modules:

TPMC682

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2007 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0.0 First Issue March 21, 2007

TDRV008-SW-65 – Windows WDM Device Driver Page 3 of 24

Table of Content
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Software Installation ...5
2.1.1 Windows 2000 / XP.. 5
2.1.2 Confirming Windows 2000 / XP Installation ...5

3 TDRV008 DEVICE DRIVER PROGRAMMING... 6
3.1 TDRV008 Files and I/O Functions.. 6

3.1.1 Opening a TDRV008 Device..6
3.1.2 Closing a TDRV008 Device ...8
3.1.3 TDRV008 Device I/O Control Functions .. 9

3.1.3.1 IOCTL_TDRV008_READ ...11
3.1.3.2 IOCTL_TDRV008_WRITE ...14
3.1.3.3 IOCTL_TDRV008_GETPORT..17
3.1.3.4 IOCTL_TDRV008_SETPORT ..19
3.1.3.5 IOCTL_TDRV008_CONFPORT ...21
3.1.3.6 IOCTL_TDRV008_FLUSHPORTS...24

TDRV008-SW-65 – Windows WDM Device Driver Page 4 of 24

1 Introduction
The TDRV008-SW-65 Windows WDM (Windows Driver Model) device driver is a kernel mode driver
which allows the operation of the TDRV008 supported devices on an Intel or Intel-compatible x86
Windows 2000, Windows XP operating systems.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceIoControl) provide
the basic interface for opening and closing a resource handle and for performing device I/O control
operations.

The TDRV008 device driver supports the following features:

write to the 8-bit GPO port 5
read from the 8-bit GPI port 4
configure ports (direction, mode and hardware timeout)
buffered read and write of the 16-bit ports (0, 1 & 2) in pulsed or interlocked handshake mode
hardware FIFO flush

Supported Modules:

TPMC682 3 x 16 bit I/O Ports with 512 Word FIFO and Handshake PMC

In this document all supported modules and devices will be called TDRV008. Specials for
certain devices will be advised.

To get more information about the features and use of TPMC682 devices it is recommended to read
the manuals listed below.

TPMC682 User manual
TPMC682 Engineering Manual

TDRV008-SW-65 – Windows WDM Device Driver Page 5 of 24

2 Installation
Following files are located on the distribution media:

tdrv008.sys Windows NT driver binary
tdrv008.h Header-file with IOCTL code definitions
tdrv008.inf Windows NT installation script
TDRV008-SW-65-1.0.0.pdf This document
\example\tdrv008exa.c Microsoft Visual C example application
Release.txt Release Information
ChangeLog.txt Release History

2.1 Software Installation

2.1.1 Windows 2000 / XP
This section describes how to install the TDRV008 Device Driver on a Windows 2000 / XP operating
system.

After installing the TDRV008 card(s) and boot-up your system, Windows 2000 / XP setup will show a
"New hardware found" dialog box.

1. The "Upgrade Device Driver Wizard" dialog box will appear on your screen.
Click "Next" button to continue.

2. In the following dialog box, choose "Search for a suitable driver for my device".
Click "Next" button to continue.

3. In Drive A, insert the TDRV008 driver disk; select "Disk Drive" in the dialog box.
Click "Next" button to continue.

4. Now the driver wizard should find a suitable device driver on the diskette.
Click "Next" button to continue.

5. Complete the upgrade device driver and click "Finish" to take all the changes effect.

6. Now copy all needed files (tdrv008.h, TDRV008-SW-65.pdf) to the desired target directories.

After successful installation the TDRV008 device driver will start immediately and creates devices
(TDRV008_1, TDRV008_2 ...) for all recognized TDRV008 modules.

2.1.2 Confirming Windows 2000 / XP Installation
To confirm that the driver has been properly loaded in Windows 2000 / XP, perform the following
steps:

1. From Windows 2000 / XP, open the "Control Panel" from "My Computer".

2. Click the "System" icon and choose the "Hardware" tab, and then click the "Device
Manager" button.

3. Click the "+" in front of "Other Devices".
The driver " TEWS TECHNOLOGIES TDRV008 Buffered Digital I/O with Handshake
(TPMC682)" should appear.

TDRV008-SW-65 – Windows WDM Device Driver Page 6 of 24

3 TDRV008 Device Driver Programming
The TDRV008-SW-65 Windows WDM device driver is a kernel mode device driver.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceIoControl) provide
the basic interface for opening and closing a resource handle and for performing device I/O control
operations.

All of these standard Win32 functions are described in detail in the Windows Platform SDK
Documentation (Windows base services / Hardware / Device Input and Output).

For details refer to the Win32 Programmers Reference of your used programming tools (C++, Visual
Basic etc.)

3.1 TDRV008 Files and I/O Functions
The following section does not contain a full description of the Win32 functions for interaction with the
TDRV008 device driver. Only the required parameters are described in detail.

3.1.1 Opening a TDRV008 Device
Before you can perform any I/O the TDRV008 device must be opened by invoking the CreateFile
function. CreateFile returns a handle that can be used to access the TDRV008 device.

HANDLE CreateFile(
LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes ,
HANDLE hTemplateFile

);

Parameters

LPCTSTR lpFileName
This parameter points to a null-terminated string, which specifies the name of the TDRV008
device to open. The lpFileName string should be of the form \\.\TDRV008_x to open the device
x. The ending x is a one-based number. The first device found by the driver is \\.\TDRV008_1,
the second \\.\TDRV008_2 and so on.

DWORD dwDesiredAccess
This parameter specifies the type of access to the TDRV008.
For the TDRV008 this parameter must be set to read-write access (GENERIC_READ |
GENERIC_WRITE)

DWORD dwShareMode
Set of bit flags that specify how the object can be shared. Set to 0.

TDRV008-SW-65 – Windows WDM Device Driver Page 7 of 24

LPSECURITY_ATTRIBUTES lpSecurityAttributes
This argument is a pointer to a security structure. Set to NULL for TDRV008 devices.

DWORD dwCreationDistribution
Specifies the action to take on existing files, and which action to take when files do not exist.
TDRV008 devices must be always openedOPEN_EXISTING.

DWORD dwFlagsAndAttributes
Specifies the file attributes and flags for the file. This value must be set to 0 (no overlapped I/O).

HANDLE hTemplateFile
This value must be NULL for TDRV008 devices.

Return Value

If the function succeeds, the return value is an open handle to the specified TDRV008 device. If the
function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call
GetLastError.

Example

HANDLE hDevice;

hDevice = CreateFile(

“\\\\.\\TDRV008_1”,
GENERIC_READ | GENERIC_WRITE,
0,

NULL, // no security attrs
OPEN_EXISTING, // TDRV008 device always open existing
0, // no overlapped I/O

NULL
);

if (hDevice == INVALID_HANDLE_VALUE) {
ErrorHandler("Could not open device"); // process error

}

See Also

CloseHandle(), Win32 documentation CreateFile()

TDRV008-SW-65 – Windows WDM Device Driver Page 8 of 24

3.1.2 Closing a TDRV008 Device
The CloseHandle function closes an open TDRV008 handle.

BOOL CloseHandle(
HANDLE hDevice;

);

Parameters

HANDLE hDevice
Identifies an open TDRV008 handle.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Example

HANDLE hDevice;

if(CloseHandle(hDevice)) {

ErrorHandler("Could not close device"); // process error
}

See Also

CreateFile (), Win32 documentation CloseHandle ()

TDRV008-SW-65 – Windows WDM Device Driver Page 9 of 24

3.1.3 TDRV008 Device I/O Control Functions
The DeviceIoControl function sends a control code directly to a specified device driver, causing the
corresponding device to perform the specified operation.

BOOL DeviceIoControl(
HANDLE hDevice,
DWORD dwIoControlCode ,
LPVOID lpInBuffer,
DWORD nInBufferSize,
LPVOID lpOutBuffer,
DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped

);

Parameters

HANDLE hDevice
Handle to the TDRV008 that is to perform the operation.

DWORD dwIoControlCode
This parameter specifies the control code for the operation. This value identifies the specific
operation to be performed. The following values are defined in TPMC680.h:

Value Meaning

IOCTL_TDRV008_READ Buffered read from a 16-bit handshake port

IOCTL_TDRV008_WRITE Buffered write to a 16-bit handshake port

IOCTL_TDRV008_GETPORT Get the state of the 8-bit GPI port #4

IOCTL_TDRV008_SETPORT Set the state of the 8-bit GPO port #5

IOCTL_TDRV008_CONFPORT Port setup

IOCTL_TDRV008_FLUSHPORTSFlush the hardware FIFOs of the 16-bit ports

See behind for more detailed information on each control code.

LPVOID lpInBuffer
Pointer to a buffer that contains the data required to perform the operation.

DWORD nInBufferSize
This argument specifies the size, in bytes, of the buffer pointed to by lpInBuffer.

TDRV008-SW-65 – Windows WDM Device Driver Page 10 of 24

LPVOID lpOutBuffer
Pointer to a buffer that receives the operation’s output data.

DWORD nOutBufferSize
This argument specifies the size, in bytes, of the buffer pointed to by lpOutBuffer.

LPDWORD lpBytesReturned
Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to
by lpOutBuffer. A valid pointer is required.

LPOVERLAPPED lpOverlapped
This argument is a pointer to an Overlapped structure. This value must be set to NULL (no
overlapped I/O).

To use these TDRV008 specific control codes the header file tdrv008.h must be included.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Note. The TDRV008 device driver returns always standard Win32 error codes on failure, please refer
to the Windows Platform SDK Documentation for a detailed description of returned error codes.

See Also

Win32 documentation DeviceIoControl ()

TDRV008-SW-65 – Windows WDM Device Driver Page 11 of 24

3.1.3.1 IOCTL_TDRV008_READ
This TDRV008 control function reads 16-bit values from the FIFO of a given port. If data isn’t available
when calling this function a timeout is used to implement a blocking read. A pointer to the I/O buffer
(TDRV008_RW_BUFFER) is passed by the parameter lpInBuffer and additionally by lpOutBuffer to
the driver.

The TDRV008_RW_BUFFER structure has the following layout:

typedef struct
{

int portNo;
ULONG flags;
ULONG timeout;
int bufferSize;
int validWords;
USHORT data[TDRV008_FIFOSIZE];

} TDRV008_RW_BUFFER, *PTDRV008_RW_BUFFER;

Members

portNo
This parameter holds the port number to read from. Valid values are 0, 1 and 2.

flags
This parameter decides about non-blocking and blocking read requests. For non-blocking
operation set flags to TDRV008_F_RW_NOWAIT. To initialize a blocking read request set flags
to zero.

timeout
This parameter defines the read timeout with a given resolution of one second. So if you set it to
1 the driver should wait at least one second and worst case two seconds before terminating the
certain read request.

bufferSize
This parameter defines the maximum count of words to read. The data storage has to be large
enough to receive the specified amount of 16-bit words.

validWords
This in and out parameter holds the count of data words actually read. After read requests
completion maybe not all data words given by bufferSize were received in the given time. For
this purpose validWords is used for the read request result. If it is set to a value greater than 0
when starting the read request and blocking read is used then validWords is meant as an offset
to the first element of the data buffer. So successive read requests that are partially completed
can use the same I/O buffer until final read request completion.

data
This field parameter is used as data storage. It has a fixed size of TDRV008_FIFOSIZE words
to match the hardware fifo size.

TDRV008-SW-65 – Windows WDM Device Driver Page 12 of 24

Example

#include “tdrv008.h”

...
HANDLE hDevice;
BOOLEAN success;

ULONG NumBytes;
TDRV008_RW_BUFFER rwBuf;
int i;

rwBuf.portNo = 1; // read from port 1
rwBuf.flags = 0; // blocking read

rwBuf.timeout = 5; // wait at least 5 seconds
rwBuf.bufferSize = 177; // we want to receive 177 words
rwBuf.validWords = 0; // no data received yet

/* rwBuf.data[] will be filled with incoming data words */

success = DeviceIoControl (

hDevice, // TDRV008 device handle
IOCTL_TDRV008_READ, // control code
&rwBuf, // input buffer

sizeof(rwBuf),
&rwBuf, // and output buffer point to rwBuf
sizeof(rwBuf),

&NumBytes, // number of bytes transferred
NULL

);

if(success) {
// Process data, rwBuf.validWords is the real read result

for (i = 0; i < rwBuf.validWords; i++)
{

printf(“@0x&04X: 0x%02X”, i, rwBuf.data[i]);

}
...

}
else {

// Process DeviceIoControl() error
...

}

...

TDRV008-SW-65 – Windows WDM Device Driver Page 13 of 24

Error Codes

ERROR_INVALID_PARAMETER The size of the message buffer is too small or invalid
I/O buffer member (bufferSize, validWords, ...) .

ERROR_NO_SUCH_DEVICE The port specified by I/O buffer member portNo
doesn’t exist.

ERROR_INVALID_DEVICE_STATE The port was configured as output port. It has to be an
input port to start a read request.

ERROR_NETWORK_BUSY The certain port is in use.

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl()

TDRV008-SW-65 – Windows WDM Device Driver Page 14 of 24

3.1.3.2 IOCTL_TDRV008_WRITE
This TDRV008 control function writes 16-bit values to the specified buffered output port. A pointer to
an I/O buffer structure (TDRV008_RW_BUFFER) is passed by the parameter lpInBuffer and
lpOutBuffer to the driver.

The TDRV008_RW_BUFFER structure has the following layout:

typedef struct
{

int portNo;
ULONG flags;
ULONG timeout;
int bufferSize;
int validWords;
USHORT data[TDRV008_FIFOSIZE];

} TDRV008_RW_BUFFER, *PTDRV008_RW_BUFFER;

Members

portNo
This parameter holds the port number of the handshake port to write on. Valid values are 0, 1
and 2.

flags
This parameter is not used for this IOCTL function.

timeout
This parameter defines the write timeout with a given resolution of one second. So if you set it
to 1 the driver should wait at least one second and worst case two seconds before terminating
the certain write request.

bufferSize
This parameter defines the count of words to write to the hardware FIFO of the certain
handshake port.

validWords
This in and out parameter holds the count of data words actually written. In the case of a full
FIFO the write process can’t send more data words to the certain port and will block for timeout
seconds. For this purpose validWords is used for the write request result. If it is set to a value
greater than 0 when starting the write request then validWords is meant as an offset to the first
element of the data buffer. So successive write requests that are partially completed can use
the same I/O buffer until final write request completion.

data
This field parameter is used as data source during the handshake transmission. It has a fixed
maximum size of TDRV008_FIFOSIZE words to match the hardware fifo size.

TDRV008-SW-65 – Windows WDM Device Driver Page 15 of 24

Example

#include “tdrv008.h”

...

HANDLE hDevice;

BOOLEAN success;
ULONG NumBytes;
TDRV008_RW_BUFFER rwBuf;

int i;

rwBuf.portNo = 0; // read from port 1

rwBuf.timeout = 2; // wait at least 2 seconds
rwBuf.bufferSize = 411; // we want to send 411 words
rwBuf.validWords = 0; // start with element 0

for (i = 0; i < rwBuf.bufferSize; i++)
{

rwBuf.data[i] = ...; // user data
}

success = DeviceIoControl (

hDevice, // TDRV008 device handle
IOCTL_TDRV008_WRITE, // control code

&rwBuf, // input buffer
sizeof(rwBuf),
&rwBuf, // and output buffer point to rwBuf
sizeof(rwBuf),

&NumBytes, // number of bytes transferred (ignore)
NULL

);

...

TDRV008-SW-65 – Windows WDM Device Driver Page 16 of 24

...

if(success) {
// Process data, rwBuf.validWords is the real write result
for (i = 0; i < rwBuf.validWords; i++)

{
printf(“@0x&04X: 0x%02X”, i, rwBuf.data[i]);

}
...

}
else {

// Process DeviceIoControl() error
...

}

...

Error Codes

ERROR_INVALID_PARAMETER The size of the message buffer is too small or invalid
I/O buffer member (bufferSize, validWords, ...) .

ERROR_NO_SUCH_DEVICE The port specified by I/O buffer member portNo
doesn’t exist.

ERROR_INVALID_DEVICE_STATE The port was configured as input port. It has to be an
output port to start a write request.

ERROR_NETWORK_BUSY The certain port is in use.

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl()

TDRV008-SW-65 – Windows WDM Device Driver Page 17 of 24

3.1.3.3 IOCTL_TDRV008_GETPORT
This TDRV008 control function reads the state of the free input lines of the 8 bit general purpose
port 4. Only the upper 5 bit of the value are valid the lower 3 bits will always be set to 0. A pointer to
the input buffer (UCHAR) is passed by the parameter lpInBuffer to the driver. The lpOutBuffer is not
used and should be a NULL pointer.

Example

#include “tdrv008.h”

...

HANDLE hDevice;
BOOLEAN success;
ULONG NumRead;

UCHAR ucVal;

success = DeviceIoControl(hCurrent, // TDRV008 handle

IOCTL_TDRV008_GETPORT, // control code
NULL,
0,

&ucVal,
sizeof(ucVal),
&NumRead,

NULL);
//
// Check the result of the last device I/O control operation

//
if(success)
{

printf("OK\n");
printf(" port4 (bit7..3): %02Xh\n", ucVal);
...

}
else
{

printf("\nReading port4 failed --> Error = %d\n", GetLastError());
...

}

...

TDRV008-SW-65 – Windows WDM Device Driver Page 18 of 24

Error Codes

ERROR_INVALID_PARAMETER The size of the message buffer is too small.

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl()

TDRV008-SW-65 – Windows WDM Device Driver Page 19 of 24

3.1.3.4 IOCTL_TDRV008_SETPORT
This TDRV008 control function sets the state of the free output lines of the general purpose port 5.
Only the upper 5 bit of the value are valid the lower 3 bits are ignored. A pointer to the output buffer
(UCHAR) is passed by the parameter lpOutBuffer to the driver. The lpInBuffer is not used and should
be a NULL pointer.

Example

#include “tdrv008.h”

...

HANDLE hDevice;
BOOLEAN success;
ULONG NumWritten;

UCHAR ucVal;

ucVal = 0x42; // bits 0..2 are ignored -> so 0x40 will be written

success = DeviceIoControl(hCurrent, // TDRV008 handle
IOCTL_TDRV008_SETPORT, // control code

&ucVal,
sizeof(ucVal),
NULL,

0,
&NumWritten,
NULL);

//
// Check the result of the last device I/O control operation
//

if(success)
{

printf("OK\n");

...
}
else

{
printf("\nWriting port5 failed --> Error = %d\n", GetLastError());
...

}
...

TDRV008-SW-65 – Windows WDM Device Driver Page 20 of 24

Error Codes

ERROR_INVALID_PARAMETER The size of the message buffer is too small.

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl()

TDRV008-SW-65 – Windows WDM Device Driver Page 21 of 24

3.1.3.5 IOCTL_TDRV008_CONFPORT
This TDRV008 control function configures a specified handshake port. The pointer to the configuration
buffer (TDRV008_CONF_BUFFER) is passed by the parameter lpOutBuffer to the driver. The
parameter lpInBuffer is not used and should be set to NULL.

The TDRV008_CONF_BUFFER structure has the following layout:

typedef struct
{

int portNo;
ULONG flags;
BOOLEAN enaOutput;
USHORT fifoTimeout;
USHORT fifoThreshold;

} TDRV008_CONF_BUFFER, *PTDRV008_CONF_BUFFER;

Members

portNo
This parameter specifies the handshake port. Valid values are 0, 1 and 2.

flags
This parameter specifies the output handshake mode. (Refer to the User Manual of your
module for a detailed description of the output handshake modes). Following values are valid.

TDRV008_F_CONF_HOUT_HSNONE No output handshake
TDRV008_F_CONF_HOUT_HSINTERLOCKED Interlocked output handshake
TDRV008_F_CONF_HOUT_HSPULSED Pulsed output handshake

enaOutput
This parameter defines the direction of the port. If this parameter is set TRUE the port will be
configured as an output port, if it is specified FALSE the port will be configured as input.

fifoTimeout
This parameter specifies the hardware FIFO timeout value. The value will be directly written to
the module (Register TCPRx - refer to the User Manual of your module for more information).
This value is only used for input ports.

fifoThreshold
This parameter specifies the FIFO threshold value. This value will be directly written to the
module (Register FIFO_FTRx - refer to the User Manual of your module for more information).
Valid values 1 to 512.

TDRV008-SW-65 – Windows WDM Device Driver Page 22 of 24

EXAMPLE

#include “tdrv008.h”

...

HANDLE hDevice;

BOOLEAN success;
ULONG NumWritten;
UCHAR ucVal;

TDRV008_CONF_BUFFER confBuf;

...

/* Setup handshake port 0 */
/* - output */

/* - interlocked output handshake */
/* - threshold: 256 */
confBuf.portNo = 0;

confBuf.flags = TDRV008_F_CONF_HOUT_HSINTERLOCKED;
confBuf.enaOutput = TRUE;
confBuf.fifoTimeout = 0; /* not used */

confBuf.fifoThreshold = 256;

printf("\nConfigure port ... ");

success = DeviceIoControl(hCurrent, // TDRV008 handle
IOCTL_TDRV008_CONFPORT, // control code
&confBuf,
sizeof(confBuf),

NULL,
0,

&NumWritten,
NULL);

...

TDRV008-SW-65 – Windows WDM Device Driver Page 23 of 24

...

//
// Check the result of the last device I/O control operation
//

if(success)
{

printf("OK\n");
}
else
{

printf("\nIOCTL failed --> Error = %d\n", GetLastError());
}
...

Error Codes

ERROR_INVALID_PARAMETER The size of the config buffer is too small or invalid
config buffer member (flags, ...) .

ERROR_NO_SUCH_DEVICE The port specified by config buffer member portNo
doesn’t exist.

ERROR_NETWORK_BUSY The certain port is in use.

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl()

TDRV008-SW-65 – Windows WDM Device Driver Page 24 of 24

3.1.3.6 IOCTL_TDRV008_FLUSHPORTS
This TDRV008 control function flushes the FIFOs of all handshake ports (0, 1, and 2). This may be
useful after configuration. The parameter pointer lpOutBuffer and lpInBuffer are not used and should
be set to NULL.

EXAMPLE

#include “tdrv008.h“

...
HANDLE hDevice;
BOOLEAN success;

ULONG NumBytes;

printf("\nFlush ports ... ");

success = DeviceIoControl(hCurrent, // TDRV008 handle
IOCTL_TDRV008_FLUSHPORTS, // control code
NULL,

0,
NULL,
0,

&ioctlReturn,
NULL);

//

// Check the result of the last device I/O control operation
//
if(success)

{
printf("OK\n");

}

else
{

printf("\nIOCTL failed --> Error = %d\n", GetLastError());
}

Error Codes

All returned error codes are system error conditions. There are control function specific error codes.

See Also

Win32 documentation DeviceIoControl()

