TEWS &

The Embedded I/O Company TECHNOLOGIES

TDRVO012-SW-65

Windows Device Driver
32 differential I/O Lines with Interrupts

Version 2.0.x

User Manual

Issue 2.0.0
March 2011
powerB rldge TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany
Computer
9(0) 410140580 Fax: +49 (0) 4101 4058 19
il info@tews.com www.tews.com
Ehlbeek 15a

30938 Burgwedel)
fon 05139-9980-0 www.powerbridge.de

fax 05139-9980-49 info@powerbridge.de

TEWS <

TECHNOLOGIES

TDRV012-SW-65
Windows Device Driver
32 differential 1/0 Lines with Interrupts

Supported Modules:
TPMC683

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

©2009-2011 by TEWS TECHNOLOGIES GmbH

Issue

Description

Date

1.0.0

First Issue

September 25, 2009

2.0.0 Support for Windows 7 added, API functions and parameters modified March 04, 2011

TDRV012-SW-65 — Windows Device Driver

Page 2 of 47

TEWS <

TECHNOLOGIES

Table of Contents

1 INTRODUCTION....cu i iieiiiieiireerrrss s ressrress s ras s rersssrrasssrensssrensssrensssranssssansssennssrennsrens 4
2 30 530 17 Y I I N 1 L0 5
2.1 Software INStallationcccciieeieiiiiiiiiii i r e e e s e e e e e e e s s nssas s e e e essmnnssssreereeennnnnssnrrrens 5

2.1.1 WINAOWS 2000 / XP ...t e e et e e e e e e et e e e e e e e et e e e e e e e eaaaaas 5

D2 I VAT o (o 1T AT 6

2.2 Confirming Driver Installation ... 6

3 API DOCUMENTATION ...ooiiiiiiiiieiiriireessessrsssressssnssrsssssssssasssasssensssnsssanssanssensssnnssannss 7
B TR T € 7= s U= = 1IN LW 3 e 4 T'o Y 1O, 7

B Al AANVO T 20D N . . s 7

G T I (o [VL O 2 @ o L= = SRR 9

3.2 DeVvice ACCESS FUNCLIONS.......ccuiiiiiiiiiieii s s res s rr s e s rms s e e ns s s e s ma s s e s enss s srnnssssrnmnsssrnnnnnnns 1

G T2 T (o VA O 74 L= T 11

3.2.2 AArVOT2WIEIMASK ...ttt ssnnsssnnnnnnsnnnnnnnnnnnnnes 13

3.2.3 tArVOT20ULPULSEL ... s 15

3.2.4 tArVOT20ULPULCIEATueite s nnnnnnnnnnns 17

3.2.5 tdrv012ConfigureDireCtioNeeiiiiiiiie e 19

3.2.6 tdrvOT12ReadDirECHIONooeveiii et 21

3.2.7 AArVOT2WAAITEVENLot e e e e e e e e e e e e eeaaaanns 23

BT S T (o VO I AT T T | o RSP 26

T S T (o VA Ol AT AT = T o 28

3.2.10 tArVOT2WaAItANY .ottt e e e e e e e e e e e e e e e ae e e e e e b rarraaeeeaeannraaaeean 30

4 DEVICE DRIVER PROGRAMMING ..o iieciiiiiiirmerrssasrssssssnsssssnas s rsnsssennsssenannns 32
4.1 TDRVO012 Files and I/O FUNCLIONS........cuuuiiiiiiiiiieciiii e rsssmessss s s resssssssssssssessssnnsssssssesessnsnsssnssseens 32

411 OPENING @ DEBVICEcoiiiiiiie ettt et s et e e ettt e e ettt e e nb e e e e s aneeeas 32

4.1.2 ClOSING @ DEVICEeeiiiiiiiiee ittt ettt et ettt e e e e neeeas 34

4.1.3 TDRVO012 Device /O Control FUNCHONSoiiiiiieieeee et 35

4.1.3.1 1OCTL_TDRVOT2 WRITE ..ot 37

4.1.3.2 1OCTL _TDRVOT2 READ ..ot 39

4.1.3.3 1OCTL _TDRVO12 OUTPUTENABLEooiiiieeeee e 41

4.1.3.4 10CTL _TDRVO12_GET DIRECTION.....ooiiiiiiitiieeee e 43

4.1.3.5 1OCTL_TDRVO12 EVENTWAIT ... 45

TDRV012-SW-65 — Windows Device Driver Page 3 of 47

TEWS <

TECHNOLOGIES

1 Introduction

The TDRV012-SW-65 Windows device driver is a kernel mode driver which allows the operation of the
supported hardware module on an Intel or Intel-compatible Windows operating system. Supported
Windows versions are:

Windows 2000

Windows XP

Windows XP Embedded
Windows 7 (32bit and 64bit)

YV VY

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceloControl) provide
the basic interface for opening and closing a resource handle and for performing device 1/O control
operations.

The TDRV012-SW-65 device driver supports the following features:

configure input/output direction of each line

read state of input lines

write to output lines

wait for interrupt events (rising/falling edge) on each input line

YV VY

The TDRV012-SW-65 device driver supports the modules listed below:

TPMC683 ‘ 32 differential 1/0 Lines with Interrupts ‘ (PMC)

In this document all supported modules and devices will be called TDRV012. Specials for a
certain device will be advised.

To get more information about the features and use of TDRV012 devices it is recommended to read
the manuals listed below.

TPMC683 User Manual

TPMC683 Engineering Manual

TDRV012-SW-65 — Windows Device Driver Page 4 of 47

2 Installation

TEWS <

TECHNOLOGIES

Following files are located in directory TDRV012-SW-65 on the distribution media:

i386\

amd64\
installer_32bit.exe
installer_64bit.exe
tdrv012.inf

tdrv012.h
example\tdrvO12exa.c
api\tdrv012api.c
api\tdrv012api.h
TDRV012-SW-65-2.0.0.pdf
Release.txt
Changelog.txt

Directory containing driver files for 32bit Windows versions
Directory containing driver files for 64bit Windows versions
Installation tool for 32bit systems (Windows XP or later)
Installation tool for 64bit systems (Windows XP or later)
Windows installation script

Header file with IOCTL codes and structure definitions
Example application

Application Programming Interface source

Application Programming Interface header

This document

Information about the Device Driver Release

Release history

2.1 Software Installation

2.1.1 Windows 2000 / XP

This section describes how to install the TDRV012 Device Driver on a Windows 2000 / XP operating

system.

After installing the TDRV012 card(s) and boot-up your system, Windows 2000 / XP setup will show a

"New hardware found" dialog box.

1. The "Upgrade Device Driver Wizard" dialog box will appear on your screen.
Click "Next" button to continue.

2. In the following dialog box, choose "Search for a suitable driver for my device".
Click "Next" button to continue.

3. Insert the TDRV012 driver media; select "Disk Drive" in the dialog box.
Click "Next" button to continue.

4. Now the driver wizard should find a suitable device driver on the media.
Click "Next" button to continue.

5. Complete the upgrade device driver and click "Finish" to take all the changes effect.

6. Now copy all needed files (tdrv012.h and API files) to the desired target directories.

After successful installation the TDRV012 device driver will start immediately and creates devices
(TDRV012_1, TDRV012_2 ...) for all recognized TDRV012 modules.

TDRV012-SW-65 — Windows Device Driver

Page 5 of 47

TEWS <

TECHNOLOGIES

2.1.2 Windows 7

This section describes how to install the TDRV012-SW-65 Device Driver on a Windows 7 (32bit or
64bit) operating system.

Depending on the operating system type, execute the installer binaries for either 32bit or 64bit
systems. This will install all required driver files using an installation wizard.

Copy needed files (tdrv012.h and API files) to desired target directory.
After successful installation a device is created for each module found (TDRV012_1, TDRV012_2 ..).

2.2 Confirming Driver Installation

To confirm that the driver has been properly loaded, perform the following steps:
1. Open the Windows Device Manager:

a. For Windows 2000 / XP, open the "Control Panel' from "My Computer" and click the
"System" icon and choose the "Hardware" tab, and then click the "Device Manager"
button.

b. For Windows 7, open the "Control Panel' from "My Computer" and then click the
"Device Manager" entry.

2. Click the "+" in front of "Embedded I/O".
The driver "TEWS TECHNOLOGIES — TDRV012 (Digital I/0) (TPMC683)" should appear for
each installed device.

TDRV012-SW-65 — Windows Device Driver Page 6 of 47

TEWS <

TECHNOLOGIES

3 APl Documentation

3.1 General Functions

3.1.1 tdrv0120pen

NAME

tdrv0120pen — Opens a Device

SYNOPSIS

TDRV012 HANDLE tdrv0120pen
(

char *DeviceName

) 7

DESCRIPTION

Before 1/0 can be performed to a device, a file descriptor must be opened by a call to this function.

PARAMETERS

DeviceName
This parameter points to a null-terminated string that specifies the name of the device.

EXAMPLE

#include “tdrv0l2api.h”

TDRVO12 HANDLE hdl;

/*

** open file descriptor to device

*/

hdl = tdrv0120pen (“\\\\.\\TDRV012_ 1");
if (hdl == NULL)

{

/* handle open error */

TDRV012-SW-65 — Windows Device Driver Page 7 of 47

TEWS <

TECHNOLOGIES

RETURNS

A device handle, or NULL if the function fails. To get extended error information, call GetLastError.

ERROR CODES

All error codes are standard error codes set by the I/O system.

TDRV012-SW-65 — Windows Device Driver Page 8 of 47

TEWS <

TECHNOLOGIES

3.1.2 tdrv012Close

NAME

tdrv012Close — Closes a Device

SYNOPSIS

TDRVO12 STATUS tdrv0l2Close

(
TDRV012 HANDLE hdl

) ;

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hadl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tdrv0l2api.h”

TDRVO12 HANDLE hdl;
TDRV012 STATUS result;

/*
** close file descriptor to device
*/

result = tdrv01l2Close(hdl);

if (result != TDRVO12 OK)

{

/* handle close error */

TDRV012-SW-65 — Windows Device Driver Page 9 of 47

TEWS <

TECHNOLOGIES

RETURNS

On success TDRV012_OK, or an appropriate error code.

ERROR CODES

’ TDRVO012_ERR_INVALID_HANDLE | The specified TDRV012_HANDLE is invalid.

Other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver Page 10 of 47

3.2 Device Access Functions

3.2.1 tdrv012Read

NAME

tdrv012Read — Read current I/O Value

SYNOPSIS

TDRVO12 STATUS tdrvO0l2Read

(
TDRV012 HANDLE hdl,
uint32 t *pIoValue

) 7

DESCRIPTION

TEWS <

TECHNOLOGIES

This function reads the current state of the input and output lines of the specified device.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the

corresponding open-function.

ploValue

This value is a pointer to a uint32_t 32bit data buffer which receives the current 1/0O value. Both
input and output values are returned. Bit O of this value corresponds to the first I/O line, bit 1

corresponds to the second I/O line and so on.

TDRV012-SW-65 — Windows Device Driver

Page 11 of 47

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tdrv0l2api.h”

TDRV012 HANDLE hdl;
TDRV012 STATUS result;

uint32 t IoValue;

/*

** read current I/0 value

*/

result = tdrv0l2Read(hdl, &IoValue);
if (result == TDRV01l2 OK)

{

printf(“I/0 Value: 0x%08X\n”, IoValue);
} else {

/* handle error */

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TDRVO012_ERR_INVALID_HANDLE | The specified TDRV012_HANDLE is invalid.

Other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver Page 12 of 47

TEWS <

TECHNOLOGIES

3.2.2 tdrv012WriteMask

NAME

tdrv012WriteMask — Write relevant Bits of Output Value

SYNOPSIS

TDRV012 STATUS tdrv0l2WriteMask

(
TDRV012 HANDLE hdl,

uint32 t Outputvalue,
uint32 t BitMask

)i

DESCRIPTION

This function writes relevant bits of a new output value for the specified device.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

OutputValue
This value specifies the new output value. Bit 0 of this value corresponds to the first output line,
bit 1 corresponds to the second output line and so on.

BitMask

This parameter specifies the bitmask. Only active bits (1) will be written to the output register, all
other output lines will be left unchanged. Bit 0 of this value corresponds to the first output line,
bit 1 corresponds to the second output line and so on.

TDRV012-SW-65 — Windows Device Driver Page 13 of 47

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tdrv0l2api.h”

TDRV012 HANDLE hdl;
TDRV012 STATUS result;

/*
** write new output value:
** get 2" (bit 1) output line to ON, and 7" (bit 6) output line to OFF.
** leave all other output lines unchanged.
*/
result = tdrv01l2WriteMask (
hdl,
(1 << 1),
(1 << 1) | (1 << 6)
);
if (result == TDRVO12 OK)
{
/* OK */
} else {
/* handle error */

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

‘ TDRVO012_ERR_INVALID_HANDLE | The specified TDRV012_HANDLE is invalid.

Other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver Page 14 of 47

TEWS <

TECHNOLOGIES

3.2.3 tdrv0120utputSet

NAME

tdrv0120utputSet — Set single Output Lines to ON

SYNOPSIS

TDRVO12 STATUS tdrv01l20utputSet

(
TDRV012 HANDLE hdl,

uint32 t OutputValue
)i

DESCRIPTION

This function sets single output lines to ON leaving other output lines in the current state.

PARAMETERS

hadl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

OutputValue

This value specifies the new output value. Active (1) bits will set the corresponding output line to
ON, unset (0) bits will not have an effect on the corresponding output lines. Bit 0 of this value
corresponds to the first output line, bit 1 corresponds to the second output line and so on.

TDRV012-SW-65 — Windows Device Driver Page 15 of 47

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tdrv0l2api.h”

TDRV012 HANDLE hdl;
TDRV012 STATUS result;

/*
** write new output value:
**x get 2" (bit 1) and 3*¢ (bit 2) output line to ON.
** leave all other output lines unchanged.
*/
result = tdrv0l20utputSet (
hdl,
(1 << 1) | (1 << 2)
) ;
if (result == TDRVO12 OK)
{
/* OK */
} else {
/* handle error */

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

‘ TDRVO012_ERR_INVALID_HANDLE | The specified TDRV012_HANDLE is invalid.

Other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver Page 16 of 47

TEWS <

TECHNOLOGIES

3.2.4 tdrv0120utputClear

NAME

tdrv0120utputClear — Clear single Output Lines to OFF

SYNOPSIS

TDRVO12 STATUS tdrv0l20utputClear

(
TDRV012 HANDLE hdl,

uint32 t OutputValue
)i

DESCRIPTION

This function clears single output lines to OFF leaving other output lines in the current state.

PARAMETERS

hadl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

OutputValue

This value specifies the new output value. Active (1) bits will clear the corresponding output line
to OFF, unset (0) bits will not have an effect on the corresponding output lines. Bit 0 of this
value corresponds to the first output line, bit 1 corresponds to the second output line and so on.

TDRV012-SW-65 — Windows Device Driver Page 17 of 47

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tdrv0l2api.h”

TDRV012 HANDLE hdl;
TDRV012 STATUS result;

/*
** write new output value:
** clear 2™ (bit 1) and 4" (bit 3) output line to OFF.
** leave all other output lines unchanged.
*/
result = tdrv0l20utputClear (
hdl,
(1 << 1) | (1 << 3)
);
if (result == TDRVO12 OK)
{
/* OK */
} else {
/* handle error */

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

‘ TDRVO012_ERR_INVALID_HANDLE | The specified TDRV012_HANDLE is invalid.

Other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver Page 18 of 47

TEWS <

TECHNOLOGIES

3.2.5 tdrv012ConfigureDirection

NAME

tdrv012ConfigureDirection — Configure Input/Output Direction of 1/O Lines

SYNOPSIS

TDRV012 STATUS tdrv0l2ConfigureDirection

(
TDRV012 HANDLE hdl,

uint32 t DirectionValue,
uint32 t DirectionMask

) i

DESCRIPTION

This function configures the direction (input/output) of specific I/O lines. Only specific lines specified by
a mask are affected.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

DirectionValue

This value specifies the direction of the corresponding I/O lines. An active (1) bit will configure
the corresponding 1/O line to OUTPUT, an unset (0) bit will configure the corresponding I/O line
to INPUT. Bit 0 of this value corresponds to the first I/O line, bit 1 corresponds to the second I/O
line and so on.

DirectionMask

This parameter specifies the bitmask. Only active bits (1) will have an effect on the I/O direction,
the direction of all other I/O lines will be left unchanged. Bit 0 of this value corresponds to the
first I/O line, bit 1 corresponds to the second I/O line and so on.

TDRV012-SW-65 — Windows Device Driver Page 19 of 47

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tdrv0l2api.h”

TDRV012 HANDLE
TDRV012 STATUS

hdl;

result;

/*
** configure new I/O direction:

** gset lowest 8 I/O lines to OUTPUT,

*
*/
result = tdrv0l2ConfigureDirection (
hdl,
(0x00 << 24) |
(Oxff << 24) |
);
(result

if
{

TDRV012 OK)
/* OK */

} else {
/* handle error */

RETURNS

and highest 8 I/O lines to input.

leave all other I/0 lines unchanged.

(0xff << 0),
(0xff << 0)

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned

by the function.

ERROR CODES

' TDRVO012_ERR_INVALID_HANDLE

The specified TDRV012_HANDLE is invalid.

Other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver

Page 20 of 47

TEWS <

TECHNOLOGIES

3.2.6 tdrv012ReadDirection

NAME

tdrv012ReadDirection — Read current Input/Output Direction Configuration of 1/0 Lines

SYNOPSIS

TDRVO12 STATUS tdrv0l2ReadDirection

(
TDRV012 HANDLE hdl,

uint32 t *pDirectionValue

) 7

DESCRIPTION

This function reads the current direction configuration (input/output) of the 1/O lines.

PARAMETERS

hadl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pDirectionValue

This value is a pointer to a uint32_t 32bit data buffer which receives the current 1/O direction
configuration. Active (1) bits represent OUTPUT lines, unset (0) bits represent INPUT lines. Bit
0 of this value corresponds to the first I/O line, bit 1 corresponds to the second I/O line and so
on.

TDRV012-SW-65 — Windows Device Driver Page 21 of 47

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tdrv0l2api.h”

TDRV012 HANDLE hdl;
TDRV012 STATUS result;

uint32 t DirectionValue;
/*
** read current I/0 direction configuration
*/
result = tdrv0l2ReadDirection (

hdl,

&DirectionValue

) ;

if (result == TDRV01l2 OK)

{
printf (“Current direction configuration (1=0UTPUT, O0=INPUT) :\n”);
printf (Y 0x%08X\n”, DirectionValue) ;

} else {
/* handle error */

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

‘ TDRVO012_ERR_INVALID_HANDLE | The specified TDRV012_HANDLE is invalid.

Other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver Page 22 of 47

TEWS <

TECHNOLOGIES

3.2.7 tdrv012WaitEvent

NAME

tdrv012WaitEvent — Wait for specific Transitions on 1/O Lines

SYNOPSIS

TDRV012 STATUS tdrv0l2WaitEvent

(
TDRV012 HANDLE hdl,

uint32 t mask high,
uint32 t mask low,
int timeout,
uint32 t *pIoValue,
uint32 t *pStatusHigh,
uint32 t *pStatusLow

)

DESCRIPTION

This function blocks until at least one of the specified events or a timeout occurs.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

mask_high

This parameter specifies on which input line a HIGH transition should occur to trigger an event.
Multiple input lines may be specified. Bit 0 of this value corresponds to the first I/O line, bit 1
corresponds to the second I/O line and so on.

mask_low

This parameter specifies on which input line a LOW transition should occur to trigger an event.
Multiple input lines may be specified. Bit 0 of this value corresponds to the first I/O line, bit 1
corresponds to the second I/O line and so on.

timeout

This parameter specifies the time the function should wait for the event. The timeout is specified
in milliseconds, although the granularity is in seconds. Use -1 to wait indefinitely for the event.

TDRV012-SW-65 — Windows Device Driver Page 23 of 47

TEWS <

TECHNOLOGIES

ploValue

This value is a pointer to a uint32_t 32bit data buffer which returns the state of the input lines at
the moment the event is served by the interrupt service routine. Keep in mind that there is a
system-dependent interrupt latency, so it is not guaranteed that this value is the actual input
state at the time of the event.

pStatusHigh

This parameter is a pointer to a uint32_t 32bit data buffer which returns on which input lines a
HIGH transition has occurred for the current wait job. This parameter is a bitmask, where bit 0
corresponds to 1/O line 0, bit 1 corresponds to I/O line 1 and so on.

pStatusLow

This parameter is a pointer to a uint32_t 32bit data buffer which returns on which input lines a
LOW transition has occurred for the current wait job. This parameter is a bitmask, where bit 0
corresponds to I/O line 0, bit 1 corresponds to I/O line 1 and so on.

EXAMPLE

#include “tdrv0l2api.h”

TDRVOIZ_HANDLE hdl;
TDRV012 STATUS result;
uint32 t IoValue, StatusHigh, StatusLow;

/*
** wait at least 1000ms for events:
** HIGH transition on I/0O line 0 or
** TLOW transition on I/O line 1 or
** HIGH/LOW=ANY transition on I/O line 2
*/
result = tdrv0l2WaitEvent (
hdl,
(1 << 2) | (1 << 0),
(1 << 2) | (1 << 1),
1000,
&IoValue,
&StatusHigh,
&StatusLow

TDRV012-SW-65 — Windows Device Driver Page 24 of 47

TEWS <

TECHNOLOGIES

if (result == TDRVO12 OK)
{
printf (Y Current I/0 status : 0x%081X\n”, IoValue);
printf (Y HIGH transition status: 0x%081X\n”, StatusHigh);
printf (Y LOW transition status: 0x%081X\n”, StatusLow);
} else {
/* handle error */

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned

by the function.

ERROR CODES
TDRVO012_ERR_INVALID_HANDLE | The specified TDRV012_HANDLE is invalid.
TDRV012_ERR_BUSY Too many concurrent wait jobs pending (max. 100)
TDRVO012_ERR_TIMEOUT Timeout. None of the specified events occurred.

Other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver Page 25 of 47

TEWS <

TECHNOLOGIES

3.2.8 tdrv012WaitHigh

NAME

tdrv012WaitHigh — Wait for HIGH Transitions on specific I/O Lines

SYNOPSIS

TDRV012 STATUS tdrv0l2WaitHigh

(
TDRV012 HANDLE hdl,

uint32 t mask,
int timeout,
uint32 t *pIoValue,
uint32 t *pStatus
)i
DESCRIPTION

This function blocks until at least one of the specified HIGH events or a timeout occurs.

PARAMETERS

hal
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

mask

This parameter specifies on which input line the HIGH transition should occur to trigger an
event. Multiple input lines may be specified. Bit O of this value corresponds to the first I/O line,
bit 1 corresponds to the second I/O line and so on.

timeout

This parameter specifies the time the function should wait for the event. The timeout is specified
in milliseconds, although the granularity is in seconds. Use -1 to wait indefinitely for the event.

ploValue

This value is a pointer to a uint32_t 32bit data buffer which returns the state of the input lines at
the moment the event is served by the interrupt service routine. Keep in mind that there is a
system-dependent interrupt latency, so it is not guaranteed that this value is the actual input
state at the event.

pStatus

This parameter is a pointer to a uint32_t 32bit data buffer which returns on which input lines a
HIGH transition has occurred for the current wait job. This parameter is a bitmask, where bit 0
corresponds to I/O line 0, bit 1 corresponds to I/O line 1 and so on.

TDRV012-SW-65 — Windows Device Driver Page 26 of 47

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tdrv0l2api.h”

TDRV012 HANDLE hdl;
TDRV012 STATUS result;

uint32 t IoValue;
uint32 t Status;
/*

** wait at least 1000ms for HIGH transition events:
** HIGH transition on I/O line 31

*/
result = tdrv0l2WaitHigh (
hdl,
(1 << 31),
1000,
&IoValue,
&Status
) ;
if (result == TDRVO12 OK)
{
printf (Y Current I/0 status : 0x%08X\n”, IoValue);
printf (Y HIGH transition status: 0x%08X\n”, Status);
} else {
/* handle error */
}
RETURNS
On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.
ERROR CODES
TDRVO012_ERR_INVALID_HANDLE | The specified TDRV012_HANDLE is invalid.
TDRV012_ERR_BUSY Too many concurrent wait jobs pending (max. 100)
TDRVO012_ERR_TIMEOUT Timeout. None of the specified events occurred.

Other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver Page 27 of 47

TEWS <

TECHNOLOGIES

3.2.9 tdrv012WaitLow

NAME

tdrv012WaitLow — Wait for LOW Transitions on specific 1/0 Lines

SYNOPSIS

TDRV012 STATUS tdrv0l2WaitLow

(
TDRV012 HANDLE hdl,

uint32 t mask,
int timeout,
uint32 t *pIoValue,
uint32 t *pStatus
)i
DESCRIPTION

This function blocks until at least one of the specified LOW events or a timeout occurs.

PARAMETERS

handle
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

mask

This parameter specifies on which input line the LOW transition should occur to trigger an
event. Multiple input lines may be specified. Bit O of this value corresponds to the first I/O line,
bit 1 corresponds to the second I/O line and so on.

timeout

This parameter specifies the time the function should wait for the event. The timeout is specified
in milliseconds, although the granularity is in seconds. Use -1 to wait indefinitely for the event.

ploValue

This value is a pointer to a uint32_t 32bit data buffer which returns the state of the input lines at
the moment the event is served by the interrupt service routine. Keep in mind that there is a
system-dependent interrupt latency, so it is not guaranteed that this value is the actual input
state at the event.

pStatus

This parameter is a pointer to a uint32_t 32bit data buffer which returns on which input lines a
LOW transition has occurred for the current wait job. This parameter is a bitmask, where bit 0
corresponds to I/O line 0, bit 1 corresponds to I/O line 1 and so on.

TDRV012-SW-65 — Windows Device Driver Page 28 of 47

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tdrv0l2api.h”

TDRV012 HANDLE hdl;
TDRV012 STATUS result;

uint32 t IoValue;
uint32 t Status;
/*

** wait at least 1000ms for LOW transition events:
** LOW transition on I/0 line 31

*/
result = tdrv0l2WaitLow (
hdl,
(1 << 31),
1000,
&IoValue,
&Status
) ;
if (result == TDRVO12 OK)
{
printf (Y Current I/0 status : 0x%08X\n”, IoValue);
printf (Y LOW transition status: 0x%08X\n”, Status);
} else {
/* handle error */
}
RETURNS
On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.
ERROR CODES
TDRVO012_ERR_INVALID_HANDLE | The specified TDRV012_HANDLE is invalid.
TDRV012_ERR_BUSY Too many concurrent wait jobs pending (max. 100)
TDRVO012_ERR_TIMEOUT Timeout. None of the specified events occurred.

Other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver Page 29 of 47

TEWS <

TECHNOLOGIES

3.2.10 tdrv012WaitAny

NAME

tdrv012WaitAny — Wait for HIGH or LOW Transitions on specific 1/O Lines

SYNOPSIS

TDRV012 STATUS tdrv0l2WaitAny

(
TDRV012 HANDLE hdl,

uint32 t mask,
int timeout,
uint32 t *pIoValue,
uint32 t *pStatus
)i
DESCRIPTION

This function blocks until at least one of the specified HIGH or LOW events or a timeout occurs.

PARAMETERS

hal
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

mask

This parameter specifies on which input line the HIGH or LOW transition should occur to trigger
an event. Multiple input lines may be specified. Bit O of this value corresponds to the first 1/0
line, bit 1 corresponds to the second I/O line and so on.

timeout

This parameter specifies the time the function should wait for the event. The timeout is specified
in milliseconds, although the granularity is in seconds. Use -1 to wait indefinitely for the event.

ploValue

This value is a pointer to a uint32_t 32bit data buffer which returns the state of the input lines at
the moment the event is served by the interrupt service routine. Keep in mind that there is a
system-dependent interrupt latency, so it is not guaranteed that this value is the actual input
state at the event.

pStatus

This parameter is a pointer to a uint32_t 32bit data buffer which returns on which input lines a
HIGH or LOW transition has occurred for the current wait job. This parameter is a bitmask,
where bit 0 corresponds to 1/O line 0, bit 1 corresponds to I/O line 1 and so on. It is not possible
to distinguish between a HIGH or LOW event. To do this, use tdrv012waitEvent() instead.

TDRV012-SW-65 — Windows Device Driver Page 30 of 47

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tdrv0l2api.h”

TDRV012 HANDLE hdl;
TDRV012 STATUS result;

uint32 t IoValue;
uint32 t Status;
/*

** wait at least 1000ms for HIGH or LOW transition events:

** any transition on I/O line O

*/
result = tdrv0l2WaitAny (
hdl,
(1 << 0),
1000,
&IoValue,
&Status
) ;
if (result == TDRVO12 OK)
{
printf (Y Current I/0 status : 0x%08X\n”, IoValue);
printf (Y transition status : 0x%08X\n”, Status);
} else {
/* handle error */
}
RETURNS
On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.
ERROR CODES
TDRVO012_ERR_INVALID_HANDLE | The specified TDRV012_HANDLE is invalid.
TDRV012_ERR_BUSY Too many concurrent wait jobs pending (max. 100)
TDRVO012_ERR_TIMEOUT Timeout. None of the specified events occurred.

Other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver Page 31 of 47

TEWS <

TECHNOLOGIES

4 Device Driver Programming

4.1

The TDRV012-SW-65 Windows WDM device driver is a kernel mode device driver.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceloControl) provide
the basic interface for opening and closing a resource handle and for performing device 1/O control
operations.

All of these standard Win32 functions are described in detail in the Windows Platform SDK
Documentation (Windows base services / Hardware / Device Input and Output).

For details refer to the Win32 Programmers Reference of your used programming tools (C++, Visual
Basic etc.)

TDRVO012 Files and I/0 Functions

The following section does not contain a full description of the Win32 functions for interaction with the
TDRVO012 device driver. Only the required parameters are described in detail.

4.1.1 Opening a Device

Before you can perform any /O the TDRV012 device must be opened by invoking the CreateFile
function. CreateFile returns a handle that can be used to access the TDRV012 device.

HANDLE CreateFile(

LPCTSTR IpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES IpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile
);
PARAMETERS
IpFileName
This parameter points to a null-terminated string, which specifies the name of the TDRV012 to
open. The IpFileName string should be of the form W.\TDRV012_x to open the device x. The
ending x is a one-based number. The first device found by the driver is \.\TDRV012_1, the
second \\TDRV012_2 and so on.
dwDesiredAccess
This parameter specifies the type of access to the TDRV012.
For the TDRV012 this parameter must be set to read-write access (GENERIC_READ |
GENERIC_WRITE)
dwShareMode

Set of bit flags that specify how the object can be shared. Set to 0.

TDRV012-SW-65 — Windows Device Driver Page 32 of 47

TEWS <

TECHNOLOGIES

IpSecurityAttributes
This argument is a pointer to a security structure. Set to NULL for TDRV012 devices.

dwCreationDistribution

Specifies the action to take on existing files, and which action to take when files do not exist.
TDRVO012 devices must be always opened OPEN_EXISTING.

dwFlagsAndAttributes
Specifies the file attributes and flags for the file. This value must be set to 0 (no overlapped 1/O).

hTemplateFile
This value must be NULL for TDRV012 devices.

RETURN VALUE

If the function succeeds, the return value is an open handle to the specified TDRV012 device. If the
function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call
GetlLastError.

EXAMPLE

HANDLE hDevice;

hDevice = CreateFile (
“\\\\.\\TDRVO12 17,
GENERIC_READ | GENERIC_WRITE,

0,
NULL, // no security attrs
OPEN_EXISTING, // TDRVO01l2 device always open existing
0, // no overlapped I/0
NULL
) ;
if (hDevice == INVALID_HANDLE_VALUE) {
ErrorHandler ("Could not open device"); // process error
}
SEE ALSO

CloseHandle(), Win32 documentation CreateFile()

TDRV012-SW-65 — Windows Device Driver Page 33 of 47

TEWS <

TECHNOLOGIES

4.1.2 Closing a Device

The CloseHandle function closes an open TDRV012 handle.

BOOL CloseHandle(
HANDLE hDevice;
);

PARAMETERS

BOOLEAN hDevice
Identifies an open TDRV012 handle.

RETURN VALUE

If the function succeeds, the return value is nonzero (TRUE).

If the function fails, the return value is zero (FALSE). To get extended error information, call
GetlLastError.

EXAMPLE

HANDLE hDevice;

if(!'CloseHandle(hDevice)) {

ErrorHandler ("Could not close device"); // process error
}
SEE ALSO

CreateFile (), Win32 documentation CloseHandle ()

TDRV012-SW-65 — Windows Device Driver Page 34 of 47

TEWS <

TECHNOLOGIES

4.1.3 TDRV012 Device 1/0 Control Functions

The DeviceloControl function sends a control code directly to a specified device driver, causing the
corresponding device to perform the specified operation.

BOOL DeviceloControl(

HANDLE hDevice,
DWORD dwloControlCode,
LPVOID IpInBuffer,
DWORD ninBufferSize,
LPVOID IpOutBuffer,
DWORD nOutBufferSize,
LPDWORD IpBytesReturned,
LPOVERLAPPED IpOverlapped

);

PARAMETERS

hDevice

Handle to the TDRV012 that is to perform the operation.

dwloControlCode

This parameter specifies the control code for the operation. This value identifies the specific
operation to be performed. The following values are defined in tdrv012.h:

Value Meaning
IOCTL_TDRV012_WRITE Write output port
IOCTL_TDRV012_READ Read input port immediately

IOCTL_TDRV012_OUTPUT_ENABLE Configure input/output direction of I/O lines

IOCTL_TDRV012_GET_DIRECTION Read current input/output direction configuration

IOCTL_TDRVO12_EVENTWAIT Wait for a specified event

See behind for more detailed information on each control code.

To use these TDRV012 specific control codes the header file tdrv012.h must be included in the
application.

IpinBuffer
Pointer to a buffer that contains the data required to perform the operation.

ninBufferSize
This argument specifies the size, in bytes, of the buffer pointed to by Ip/nBuffer.

IpOutBuffer
Pointer to a buffer that receives the operation’s output data.

nQutBufferSize
This argument specifies the size, in bytes, of the buffer pointed to by lpOutBuffer.

TDRV012-SW-65 — Windows Device Driver Page 35 of 47

TEWS <

TECHNOLOGIES

IpBytesReturned

Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to
by IpOutBuffer. A valid pointer is required.

IpOverlapped

This argument is a pointer to an Overlapped structure. This value must be set to NULL (no
overlapped 1/O).

RETURN VALUE

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

SEE ALSO

Win32 documentation DeviceloControl ()

TDRV012-SW-65 — Windows Device Driver Page 36 of 47

TEWS <

TECHNOLOGIES

4.1.3.1 IOCTL_TDRVO012_WRITE

This control function writes the specified value to the output port of the TDRV012 device associated
with the open device handle.

The new port value is passed in a buffer (TDRV012_IOBUFFER) pointed to by Ip/inBuffer, to the driver.
The argument ninBufferSize specifies the size of the buffer.

typedef struct
{

uint32_t value;
uint32_t mask;
} TDRV012_IOBUFFER,;

value
This value specifies the new output value for 1/O lines 0 up to 31. Bit 0 of the value specifies the
value for I/O line 0, bit 1 for I/O line 1 and so on.

mask

This parameter specifies the bitmask. Only active bits (1) will be written to the output register, all
other output lines will be left unchanged. Bit 0 of this value corresponds to the first output line,
bit 1 corresponds to the second output line and so on.

EXAMPLE

#include "tdrv01l2.h"

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;

TDRVO12 IOBUFFER outBuf;

/* set I/0 lines 1,6,31 to HIGH, 0,2-5 and 7 to LOW */
/* all other I/O lines shall be left unchanged */

outBuf.mask = 0x800000FF;
outBuf.value = 0x80000042;
success = DeviceIoControl (
hDevice, // device handle
IOCTL TDRV012 WRITE, // control code
&outBuf,
sizeof (TDRVO12 IOBUFFER),
NULL,
0,
&NumBytes,
NULL // not overlapped

TDRV012-SW-65 — Windows Device Driver Page 37 of 47

TEWS <

TECHNOLOGIES

if(success) {
printf ("Write output value successfull\n");

}
else {

ErrorHandler ("Device I/O control error”);

ERROR CODES

ERROR_INVALID_USER_BUFFER This error is returned if the size of the user buffer is
too small.

All other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver Page 38 of 47

TEWS <

TECHNOLOGIES

4.1.3.2 IOCTL_TDRV012_READ

This control function reads the value of the input register of the TDRV012 device associated with the

open device handle.

The port value is returned in a buffer (TDRV012_IOBUFFER) pointed to by IpOutBuffer. The argument

nQutBufferSize specifies the size of the buffer.

typedef struct

{
uint32_t value;
uint32_t mask;

} TDRV012_IOBUFFER;

value
This value returns the input value for I/O lines 0 up to 31
for 1/0O line 0, bit 1 for 1/O line 1 and so on.

mask
This parameter is not used by this function.

EXAMPLE
#include "tdrv012.h"
HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TDRV012 IOBUFFER inBuf;
success = DevicelIoControl (
hDevice, // device handle
IOCTL TDRV012 READ, // control code
NULL,
0,
&inBuf,
sizeof (TDRVO12 IOBUFFER),
&NumBytes,
NULL // not overlapped
) ;
if (success) {
printf ("Read input value successful\n");
printf (" Input value: %08Xh\n",
}
else {

ErrorHandler ("Device I/0 control error”);

. Bit 0 of the value specifies the value

inBuf.value);

TDRV012-SW-65 — Windows Device Driver

Page 39 of 47

TEWS <

TECHNOLOGIES

ERROR CODES

ERROR_INVALID _USER BUFFER This error is returned if the size of the user buffer is
too small.

All other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver Page 40 of 47

TEWS <

TECHNOLOGIES

4.1.3.3 IOCTL_TDRV012_OUTPUTENABLE

This control function configures the input/output direction of the 1/O lines of the TDRV012 device
associated with the open device handle.

The new port direction is passed in a buffer (TDRV012_IOBUFFER) pointed to by IpInBuffer, to the
driver. The argument ninBufferSize specifies the size of the buffer.
typedef struct

{

uint32_t value;
uint32_t mask;
} TDRV012_IOBUFFER,;

value

This value specifies the direction of the corresponding I/O lines. An active (1) bit will configure
the corresponding 1/O line to OUTPUT, an unset (0) bit will configure the corresponding I/O line
to INPUT. Bit 0 of this value corresponds to the first I/O line, bit 1 corresponds to the second I/O
line and so on.

mask

This parameter specifies the bitmask. Only active bits (1) will have an effect on the I/O direction,
the direction of all other I/O lines will be left unchanged. Bit 0 of this value corresponds to the
first I/O line, bit 1 corresponds to the second I/O line and so on.

EXAMPLE

#include "tdrv01l2.h"

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;

TDRVO12 IOBUFFER dirBuf;

/*

** configure new I/0 direction:

** get lowest 8 I/O lines to OUTPUT, and highest 8 I/O lines to input.
** leave all other I/0O lines unchanged.

*/

dirBuf.value

(0x00 << 24) | (Oxff << 0);
(Oxff << 24) | (Oxff << 0);

dirBuf.mask

TDRV012-SW-65 — Windows Device Driver Page 41 of 47

TEWS <

TECHNOLOGIES

success = DeviceIoControl (
hDevice, // device handle
IOCTL TDRV012 OUTPUTENABLE, // control code
&dirBuf,
sizeof (TDRV0O12 IOBUFFER),
NULL,
0,
&NumBytes,
NULL // not overlapped
) ;

if (success) {

printf ("Configure I/0 direction successfull\n");
}
else {

ErrorHandler ("Device I/O control error”);

ERROR CODES

ERROR_INVALID USER BUFFER This error is returned if the size of the user buffer is
too small.

All other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver Page 42 of 47

TEWS <

TECHNOLOGIES

4.1.3.4 IOCTL_TDRV012_GET_DIRECTION

This control function reads the current direction configuration (input/output) of the 1/O lines of the
TDRVO012 device associated with the open device handle.

The direction configuration is returned in a buffer (TDRV012_IOBUFFER) pointed to by IpOutBuffer.
The argument nOutBufferSize specifies the size of the buffer.

typedef struct
{

uint32_t value;
uint32_t mask;
} TDRV012_IOBUFFER,;

value

This value returns the current 1/O direction configuration. Active (1) bits represent OUTPUT
lines, unset (0) bits represent INPUT lines. Bit 0 of this value corresponds to the first I/O line,
bit 1 corresponds to the second I/O line and so on.

mask
This parameter is not used by this function.

EXAMPLE

#include "tdrv01l2.h"

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;

TDRVO12 IOBUFFER inBuf;

success = DevicelIoControl (
hDevice, // device handle
IOCTL TDRV012 GET DIRECTION, // control code
NULL,
0,
&inBuf,
sizeof (TDRV0O12 IOBUFFER),
&NumBytes,
NULL // not overlapped
) i

if (success) {

printf ("Read direction configuration successfull\n");

printf ("™ 1I/0 direction (0=INPUT, 1=0UTPUT): %$08Xh\n", dirBuf.value);
} else {

ErrorHandler ("Device I/0 control error”);

TDRV012-SW-65 — Windows Device Driver Page 43 of 47

TEWS <

TECHNOLOGIES

ERROR CODES

ERROR_INVALID _USER BUFFER This error is returned if the size of the user buffer is
too small.

All other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver Page 44 of 47

TEWS <

TECHNOLOGIES

4.1.3.5 IOCTL_TDRVO012_EVENTWAIT

This control function waits for an event using the TDRV012 device associated with the open device
handle. The function blocks until at least one of the specified events or a timeout occurs.

The event parameters are passed in a buffer (TDRV012_EVENTWAITBUFFER) pointed to by
IpInBuffer and IpOutBuffer to the driver. The arguments ninBufferSize and nOutBufferSize specify the
size of the buffer.

typedef struct

{
uint32_t mask_high;
uint32_t mask_low;
int timeout;
uint32_t iovalue;
uint32_t status_high;
uint32_t status_low;

} TDRV012_EVENTWAITBUFFER;

mask_high
This parameter specifies on which input line a HIGH transition should occur to trigger an event.
Multiple input lines may be specified. Bit 0 of this value corresponds to the first I/O line, bit 1
corresponds to the second I/O line and so on.

mask_low

This parameter specifies on which input line a LOW transition should occur to trigger an event.
Multiple input lines may be specified. Bit 0 of this value corresponds to the first I/O line, bit 1
corresponds to the second I/O line and so on.
timeout
This parameter specifies the time the function should wait for the event. The timeout is specified
in milliseconds, although the granularity is in seconds. Use -1 to wait indefinitely for the event.
iovalue

This value returns the state of the input lines at the moment the event is served by the interrupt
service routine. Keep in mind that there is a system-dependent interrupt latency, so it is not
guaranteed that this value is the actual input state at the time of the event.

status_high

This parameter returns on which input lines a HIGH transition has occurred for the current wait
job. This parameter is a bitmask, where bit O corresponds to I/O line 0, bit 1 corresponds to 1/0
line 1 and so on.

status_low

This parameter returns on which input lines a LOW ftransition has occurred for the current wait
job. This parameter is a bitmask, where bit O corresponds to 1/O line 0, bit 1 corresponds to 1/0
line 1 and so on.

TDRV012-SW-65 — Windows Device Driver Page 45 of 47

TEWS <

TECHNOLOGIES

EXAMPLE

#include "tdrv01l2.h"

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TDRVOIZ_EVENTWAITBUFFER evBuf;
/*
** Wait at least 1000ms for a HIGH event on I/O line O
*/
evBuf.timeout = 1000;
evBuf.mask high = (1 << 0);
evBuf.mask low = 0;
success = DeviceIoControl (
hDevice, // device handle
IOCTL TDRV012 EVENTWAIT, // control code
&evBuf,
sizeof(TDRVO12_EVENTWAITBUFFER),
&evBuf,
sizeof (TDRV012 EVENTWAITBUFFER),
&NumBytes,
NULL // not overlapped

) ;

if(success) {
printf ("Specified Event occurred.\n");
printf (" I/0 Value: %08Xh\n", evBuf.iovalue);
} else {

ErrorHandler ("Device I/O control error”);

TDRV012-SW-65 — Windows Device Driver Page 46 of 47

TEWS <

TECHNOLOGIES

/*
** Wait at least 5000ms for a HIGH event on I/0 lines 0..7 or
*x for a LOW event on I/0O lines 24..31
*/

evBuf.timeout = 5000;

evBuf.mask high

evBuf.mask low

success = DeviceIoControl (

hDevice,

IOCTL TDRV01l2 EVENTWAIT,

(Oxff << 0);
(Oxff << 24);

// device handle
// control code

// not overlapped

%08xXh\n",
%08Xh\n",
%08Xh\n",

evBuf.iovalue);
evBuf.status high);

evBuf.status low);

control error”);

&evBuf,
sizeof (TDRV012 EVENTWAITBUFFER),
&evBuf,
Sizeof(TDRVO12_EVENTWAITBUFFER),
&NumBytes,
NULL

) i

if(success) {
printf ("Specified Event occurred.\n");
printf (" I/0 Value
printf (" HIGH event on:
printf (" LOW event on:

} else {
ErrorHandler ("Device I/0

}

ERROR CODES

ERROR_INVALID_USER_BUFFER

This error is returned if the size of the user buffer is
too small.

ERROR_BUSY

Too many concurrent wait jobs pending (max. 100)

ERROR_SEM_TIMEOUT

Timeout. None of the specified events occurred.

All other returned error codes are system error conditions.

TDRV012-SW-65 — Windows Device Driver

Page 47 of 47

