
The Embedded I/O Company

TDRV012-SW-82
Linux Device Driver

32 differential I/O Lines with Interrupts

Version 2.0.x

User Manual
Issue 2.0.1
August 2018

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany

Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com www.tews.com

TDRV012-SW-82 - Linux Device Driver Page 2 of 33

TDRV012-SW-82
Linux Device Driver

32 differential I/O Lines with Interrupts

Supported Modules:

TPMC683

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2009-2018 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0.0 First Issue March 20, 2009
2.0.0 API implemented, General Revision December 18, 2012
2.0.1 File-List modified August 29, 2018

TDRV012-SW-82 - Linux Device Driver Page 3 of 33

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

Build and install the device driver...52.1
Uninstall the device driver ...62.2
Install device driver into the running kernel ..62.3
Remove device driver from the running kernel ...62.4
Change Major Device Number ...72.5

3 API DOCUMENTATION ... 8
General Functions...83.1
3.1.1 tdrv012Open ..8
3.1.2 tdrv012Close..10
Device Access Functions...123.2
3.2.1 tdrv012Read ..12
3.2.2 tdrv012WriteMask ..14
3.2.3 tdrv012OutputSet...16
3.2.4 tdrv012OutputClear..18
3.2.5 tdrv012ConfigureDirection ...20
3.2.6 tdrv012ReadDirection ..22
3.2.7 tdrv012WaitEvent...24
3.2.8 tdrv012WaitHigh ..27
3.2.9 tdrv012WaitLow ...29
3.2.10 tdrv012WaitAny..31

4 DIAGNOSTIC.. 33

TDRV012-SW-82 - Linux Device Driver Page 4 of 33

1 Introduction
The TDRV012-SW-82 Linux device driver allows the operation of the TDRV012 compatible devices
conforming to the Linux I/O system specification.

The TDRV012-SW-82 device driver supports the following features:

configure input/output direction of each line
read state of input lines
write to output lines
wait for interrupt events (rising/falling edge) on each input line

The TDRV012-SW-82 supports the modules listed below:

TPMC683 32 differential I/O Lines with Interrupts PMC

In this document all supported modules and devices will be called TDRV012. Specials for a
certain device will be advised.

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TPMC683 User Manual

TDRV012-SW-82 - Linux Device Driver Page 5 of 33

2 Installation
Following files are located on the distribution media:

Directory path ‘TDRV012-SW-82’:

TDRV012-SW-82-2.0.1.pdf This manual in PDF format
TDRV012-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
ChangeLog.txt Release history
Release.txt Information about the Device Driver Release

The GZIP compressed archive TDRV012-SW-82-SRC.tar.gz contains the following files and
directories:

Directory path ‘tdrv012’:

tdrv012.c Driver source code
tdrv012def.h Driver include file
tdrv012.h Driver include file for application program
Makefile Device driver make file
makenode Script for device node creation
include/config.h Driver independent configuration header file
include/tpmodule.c Driver independent library
include/tpmodule.h Driver independent library header file
include/tpxxxhwdep.h HAL library header file
include/tpxxxhwdep.c HAL library source file
api/tdrv012api.h API include file
api/tdrv012api.c API source file
example/tdrv012exa.c Example application
example/Makefile Example application makefile
COPYING Copy of the GNU Public License (GPL)

In order to perform an installation, extract all files of the archive TDRV012-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TDRV012-SW-82-SRC.tar.gz’ will extract the files into
the local directory.

Login as root and change to the target directory

Copy tdrv012.h and api/tdrv012api.h to /usr/include

Build and install the device driver2.1
Login as root

Change to the target directory

To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

To update the device driver’s module dependencies, enter:

depmod -aq

TDRV012-SW-82 - Linux Device Driver Page 6 of 33

Uninstall the device driver2.2
Login as root

Change to the target directory

To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

Install device driver into the running kernel2.3
To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tdrv012drv

After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a dynamic device file system (devfs or sysfs with udev) then you have to
skip running the makenode script. Instead of creating device nodes from the script the driver
itself takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TDRV012 device found. The first
TDRV012 device can be accessed with device node /dev/tdrv012_0, the second module with device
node /dev/tdrv012_1 and so on.

The assignment of device nodes to physical TDRV012 modules depends on the search order of the
PCI bus driver.

Remove device driver from the running kernel2.4
To remove the device driver from the running kernel login as root and execute the following
command:

modprobe –r tdrv012drv

If your kernel has enabled a dynamic device file system (devfs or sysfs with udev) all /dev/tdrv012_x
nodes will be automatically removed from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tdrv012drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe –r again.

TDRV012-SW-82 - Linux Device Driver Page 7 of 33

Change Major Device Number2.5
This paragraph is only for Linux kernels without installed dynamic device file system. The TDRV012
driver uses dynamic allocation of major device numbers per default. If this isn’t suitable for the
application it is possible to define a major number for the driver.

To change the major number, edit the file tdrv012def.h, change the following symbol to appropriate
value and enter make install to create a new driver.

TDRV012_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

EXAMPLE:

#define TDRV012_MAJOR 122

Be sure that the desired major number isn’t used by other drivers. Please check /proc/devices
to see which numbers are free.

TDRV012-SW-82 - Linux Device Driver Page 8 of 33

3 API Documentation
General Functions3.1

3.1.1 tdrv012Open

NAME

tdrv012Open – Open a Device

SYNOPSIS

TDRV012_HANDLE tdrv012Open
(

char *DeviceName
)

DESCRIPTION

Before I/O can be performed to a device, a file descriptor must be opened by a call to this function.

PARAMETERS

DeviceName
This parameter points to a null-terminated string that specifies the name of the device. The first
TDRV012 device is named /dev/tdrv012_0, the second /dev/tdrv012_1, and so on.

EXAMPLE

#include <tdrv012api.h>

TDRV012_HANDLE hdl;

/*
** open file descriptor to device
*/
hdl = tdrv012Open(“/dev/tdrv012_0”);
if (hdl == NULL)
{

/* handle open error */
}

TDRV012-SW-82 - Linux Device Driver Page 9 of 33

RETURNS

A device handle, or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

All error codes are standard error codes set by the I/O system.

TDRV012-SW-82 - Linux Device Driver Page 10 of 33

3.1.2 tdrv012Close

NAME

tdrv012Close – Close a Device

SYNOPSIS

TDRV012_STATUS tdrv012Close
(

TDRV012_HANDLE hdl
)

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include <tdrv012api.h>

TDRV012_HANDLE hdl;
TDRV012_STATUS result;

/*
** close file descriptor to device
*/
result = tdrv012Close(hdl);
if (result != TDRV012_OK)
{

/* handle close error */
}

TDRV012-SW-82 - Linux Device Driver Page 11 of 33

RETURNS

On success TDRV012_OK, or an appropriate error code.

ERROR CODES

Error Code Description
TDRV012_ERR_INVALID_HANDLE The specified TDRV012_HANDLE is invalid.

Other returned error codes are system error conditions.

TDRV012-SW-82 - Linux Device Driver Page 12 of 33

Device Access Functions3.2

3.2.1 tdrv012Read

NAME

tdrv012Read – Read current I/O Value

SYNOPSIS

TDRV012_STATUS tdrv012Read
(

TDRV012_HANDLE hdl,
unsigned int *pIoValue

)

DESCRIPTION

This function reads the current state of the input and output lines of the specified device.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pIoValue
This value is a pointer to a uint32_t 32bit data buffer which receives the current I/O value. Both
input and output values are returned. Bit 0 of this value corresponds to the first I/O line, bit 1
corresponds to the second I/O line and so on.

TDRV012-SW-82 - Linux Device Driver Page 13 of 33

EXAMPLE

#include <tdrv012api.h>

TDRV012_HANDLE hdl;
TDRV012_STATUS result;
unsigned int IoValue;

/*
** read current I/O value
*/
result = tdrv012Read(hdl, &IoValue);
if (result == TDRV012_OK)
{

printf(“I/O Value: 0x%08X\n”, IoValue);
} else {

/* handle error */
}

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV012_ERR_INVALID_HANDLE The specified TDRV012_HANDLE is invalid.

Other returned error codes are system error conditions.

TDRV012-SW-82 - Linux Device Driver Page 14 of 33

3.2.2 tdrv012WriteMask

NAME

tdrv012WriteMask – Write relevant Bits of Output Value

SYNOPSIS

TDRV012_STATUS tdrv012WriteMask
(

TDRV012_HANDLE hdl,
unsigned int OutputValue,
unsigned int BitMask

);

DESCRIPTION

This function writes relevant bits of a new output value for the specified device.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

OutputValue
This value specifies the new output value. Bit 0 of this value corresponds to the first output line,
bit 1 corresponds to the second output line and so on.

BitMask
This parameter specifies the bitmask. Only active bits (1) will be written to the output register, all
other output lines will be left unchanged. Bit 0 of this value corresponds to the first output line,
bit 1 corresponds to the second output line and so on.

TDRV012-SW-82 - Linux Device Driver Page 15 of 33

EXAMPLE

#include <tdrv012api.h>

TDRV012_HANDLE hdl;
TDRV012_STATUS result;

/*
** write new output value:
** set 2nd (bit 1) output line to ON, and 7th (bit 6) output line to OFF.
** leave all other output lines unchanged.
*/
result = tdrv012WriteMask(

hdl,
(1 << 1),
(1 << 1) | (1 << 6)

);
if (result == TDRV012_OK)
{

/* OK */
} else {

/* handle error */
}

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV012_ERR_INVALID_HANDLE The specified TDRV012_HANDLE is invalid.

Other returned error codes are system error conditions.

TDRV012-SW-82 - Linux Device Driver Page 16 of 33

3.2.3 tdrv012OutputSet

NAME

tdrv012OutputSet – Set single Output Lines to ON

SYNOPSIS

TDRV012_STATUS tdrv012OutputSet
(

TDRV012_HANDLE hdl,
unsigned int OutputValue

)

DESCRIPTION

This function sets single output lines to ON leaving other output lines in the current state.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

OutputValue
This value specifies the new output value. Active (1) bits will set the corresponding output line to
ON, unset (0) bits will not have an effect on the corresponding output lines. Bit 0 of this value
corresponds to the first output line, bit 1 corresponds to the second output line and so on.

TDRV012-SW-82 - Linux Device Driver Page 17 of 33

EXAMPLE

#include <tdrv012api.h>

TDRV012_HANDLE hdl;
TDRV012_STATUS result;

/*
** write new output value:
** set 2nd (bit 1) and 3rd (bit 2) output line to ON.
** leave all other output lines unchanged.
*/
result = tdrv012OutputSet(

hdl,
(1 << 1) | (1 << 2)

);
if (result == TDRV012_OK)
{

/* OK */
} else {

/* handle error */
}

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV012_ERR_INVALID_HANDLE The specified TDRV012_HANDLE is invalid.

Other returned error codes are system error conditions.

TDRV012-SW-82 - Linux Device Driver Page 18 of 33

3.2.4 tdrv012OutputClear

NAME

tdrv012OutputClear – Clear single Output Lines to OFF

SYNOPSIS

TDRV012_STATUS tdrv012OutputClear
(

TDRV012_HANDLE hdl,
unsigned int OutputValue

)

DESCRIPTION

This function clears single output lines to OFF leaving other output lines in the current state.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

OutputValue
This value specifies the new output value. Active (1) bits will clear the corresponding output line
to OFF, unset (0) bits will not have an effect on the corresponding output lines. Bit 0 of this
value corresponds to the first output line, bit 1 corresponds to the second output line and so on.

TDRV012-SW-82 - Linux Device Driver Page 19 of 33

EXAMPLE

#include <tdrv012api.h>

TDRV012_HANDLE hdl;
TDRV012_STATUS result;

/*
** write new output value:
** clear 2nd (bit 1) and 4th (bit 3) output line to OFF.
** leave all other output lines unchanged.
*/
result = tdrv012OutputClear(

hdl,
(1 << 1) | (1 << 3)

);
if (result == TDRV012_OK)
{

/* OK */
} else {

/* handle error */
}

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV012_ERR_INVALID_HANDLE The specified TDRV012_HANDLE is invalid.

Other returned error codes are system error conditions.

TDRV012-SW-82 - Linux Device Driver Page 20 of 33

3.2.5 tdrv012ConfigureDirection

NAME

tdrv012ConfigureDirection – Configure Input/Output Direction of I/O Lines

SYNOPSIS

TDRV012_STATUS tdrv012ConfigureDirection
(

TDRV012_HANDLE hdl,
unsigned int DirectionValue,
unsigned int DirectionMask

)

DESCRIPTION

This function configures the direction (input/output) of specific I/O lines. Only specific lines specified by
a mask are affected.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

DirectionValue
This value specifies the direction of the corresponding I/O lines. An active (1) bit will configure
the corresponding I/O line to OUTPUT, an unset (0) bit will configure the corresponding I/O line
to INPUT. Bit 0 of this value corresponds to the first I/O line, bit 1 corresponds to the second I/O
line and so on.

DirectionMask
This parameter specifies the bitmask. Only active bits (1) will have an effect on the I/O direction,
the direction of all other I/O lines will be left unchanged. Bit 0 of this value corresponds to the
first I/O line, bit 1 corresponds to the second I/O line and so on.

TDRV012-SW-82 - Linux Device Driver Page 21 of 33

EXAMPLE

#include <tdrv012api.h>

TDRV012_HANDLE hdl;
TDRV012_STATUS result;

/*
** configure new I/O direction:
** set lowest 8 I/O lines to OUTPUT, and highest 8 I/O lines to INPUT.
** leave all other I/O lines unchanged.
*/
result = tdrv012ConfigureDirection(

hdl,
(0x00 << 24) | (0xff << 0),
(0xff << 24) | (0xff << 0)

);
if (result == TDRV012_OK)
{

/* OK */
} else {

/* handle error */
}

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV012_ERR_INVALID_HANDLE The specified TDRV012_HANDLE is invalid.

Other returned error codes are system error conditions.

TDRV012-SW-82 - Linux Device Driver Page 22 of 33

3.2.6 tdrv012ReadDirection

NAME

tdrv012ReadDirection – Read current Input/Output Direction Configuration of I/O Lines

SYNOPSIS

TDRV012_STATUS tdrv012ReadDirection
(

TDRV012_HANDLE hdl,
unsigned int *pDirectionValue

)

DESCRIPTION

This function reads the current direction configuration (input/output) of the I/O lines.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pDirectionValue
This value is a pointer to an unsigned int 32bit data buffer which receives the current I/O
direction configuration. Active (1) bits represent OUTPUT lines, unset (0) bits represent INPUT
lines. Bit 0 of this value corresponds to the first I/O line, bit 1 corresponds to the second I/O line
and so on.

TDRV012-SW-82 - Linux Device Driver Page 23 of 33

EXAMPLE

#include <tdrv012api.h>

TDRV012_HANDLE hdl;
TDRV012_STATUS result;
unsigned int DirectionValue;

/*
** read current I/O direction configuration
*/
result = tdrv012ReadDirection(

hdl,
&DirectionValue

);
if (result == TDRV012_OK)
{

printf(“Current direction configuration (1=OUTPUT, 0=INPUT):\n”);
printf(“ 0x%08X\n”, DirectionValue);

} else {
/* handle error */

}

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV012_ERR_INVALID_HANDLE The specified TDRV012_HANDLE is invalid.

Other returned error codes are system error conditions.

TDRV012-SW-82 - Linux Device Driver Page 24 of 33

3.2.7 tdrv012WaitEvent

NAME

tdrv012WaitEvent – Wait for specific Transitions on I/O Lines

SYNOPSIS

TDRV012_STATUS tdrv012WaitEvent
(

TDRV012_HANDLE hdl,
unsigned int mask_high,
unsigned int mask_low,
int timeout,
unsigned int *pIoValue,
unsigned int *pStatusHigh,
unsigned int *pStatusLow

);

DESCRIPTION

This function blocks until at least one of the specified events or a timeout occurs.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

mask_high
This parameter specifies on which input line a HIGH transition should occur to trigger an event.
Multiple input lines may be specified. Bit 0 of this value corresponds to the first I/O line, bit 1
corresponds to the second I/O line and so on.

mask_low
This parameter specifies on which input line a LOW transition should occur to trigger an event.
Multiple input lines may be specified. Bit 0 of this value corresponds to the first I/O line, bit 1
corresponds to the second I/O line and so on.

timeout
This parameter specifies the time the function should wait for the event. The timeout is specified
in milliseconds. Use -1 to wait indefinitely for the event.

TDRV012-SW-82 - Linux Device Driver Page 25 of 33

pIoValue
This value is a pointer to an unsigned int 32bit data buffer which returns the state of the input
lines at the moment the event is served by the interrupt service routine. Keep in mind that there
is a system-dependent interrupt latency, so it is not guaranteed that this value is the actual input
state at the time of the event.

pStatusHigh
This parameter is a pointer to an unsigned int 32bit data buffer which returns on which input
lines a HIGH transition has occurred for the current wait job. This parameter is a bitmask, where
bit 0 corresponds to I/O line 0, bit 1 corresponds to I/O line 1 and so on.

pStatusLow
This parameter is a pointer to an unsigned int 32bit data buffer which returns on which input
lines a LOW transition has occurred for the current wait job. This parameter is a bitmask, where
bit 0 corresponds to I/O line 0, bit 1 corresponds to I/O line 1 and so on.

EXAMPLE

#include <tdrv012api.h>

TDRV012_HANDLE hdl;
TDRV012_STATUS result;
unsigned int IoValue, StatusHigh, StatusLow;

/*
** wait at least 1000ms for events:
** HIGH transition on I/O line 0 or
** LOW transition on I/O line 1 or
** HIGH/LOW=ANY transition on I/O line 2
*/
result = tdrv012WaitEvent(

hdl,
(1 << 2) | (1 << 0),
(1 << 2) | (1 << 1),
1000,
&IoValue,
&StatusHigh,
&StatusLow

);

…

TDRV012-SW-82 - Linux Device Driver Page 26 of 33

…

if (result == TDRV012_OK)
{

printf(“ Current I/O status : 0x%08X\n”, IoValue);
printf(“ HIGH transition status: 0x%08X\n”, StatusHigh);
printf(“ LOW transition status: 0x%08X\n”, StatusLow);

} else {
/* handle error */

}

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV012_ERR_INVALID_HANDLE The specified TDRV012_HANDLE is invalid.
TDRV012_ERR_BUSY Too many concurrent wait jobs pending (max. 100)
TDRV012_ERR_TIMEOUT Timeout. None of the specified events occurred.

Other returned error codes are system error conditions.

TDRV012-SW-82 - Linux Device Driver Page 27 of 33

3.2.8 tdrv012WaitHigh

NAME

tdrv012WaitHigh – Wait for HIGH Transitions on specific I/O Lines

SYNOPSIS

TDRV012_STATUS tdrv012WaitHigh
(

TDRV012_HANDLE hdl,
unsigned int mask,
int timeout,
unsigned int *pIoValue,
unsigned int *pStatus

);

DESCRIPTION

This function blocks until at least one of the specified HIGH events or a timeout occurs.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

mask
This parameter specifies on which input line the HIGH transition should occur to trigger an
event. Multiple input lines may be specified. Bit 0 of this value corresponds to the first I/O line,
bit 1 corresponds to the second I/O line and so on.

timeout
This parameter specifies the time the function should wait for the event. The timeout is specified
in milliseconds. Use -1 to wait indefinitely for the event.

pIoValue
This value is a pointer to an unsigned int 32bit data buffer which returns the state of the input
lines at the moment the event is served by the interrupt service routine. Keep in mind that there
is a system-dependent interrupt latency, so it is not guaranteed that this value is the actual input
state at the event.

pStatus
This parameter is a pointer to an unsigned int 32bit data buffer which returns on which input
lines a HIGH transition has occurred for the current wait job. This parameter is a bitmask, where
bit 0 corresponds to I/O line 0, bit 1 corresponds to I/O line 1 and so on.

TDRV012-SW-82 - Linux Device Driver Page 28 of 33

EXAMPLE

#include <tdrv012api.h>

TDRV012_HANDLE hdl;
TDRV012_STATUS result;
unsigned int IoValue;
unsigned int Status;

/*
** wait at least 1000ms for HIGH transition events:
** HIGH transition on I/O line 31
*/
result = tdrv012WaitHigh(

hdl,
(1 << 31),
1000,
&IoValue,
&Status

);
if (result == TDRV012_OK)
{

printf(“ Current I/O status : 0x%08X\n”, IoValue);
printf(“ HIGH transition status: 0x%08X\n”, Status);

} else {
/* handle error */

}

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV012_ERR_INVALID_HANDLE The specified TDRV012_HANDLE is invalid.
TDRV012_ERR_BUSY Too many concurrent wait jobs pending (max. 100)
TDRV012_ERR_TIMEOUT Timeout. None of the specified events occurred.

Other returned error codes are system error conditions.

TDRV012-SW-82 - Linux Device Driver Page 29 of 33

3.2.9 tdrv012WaitLow

NAME

tdrv012WaitLow – Wait for LOW Transitions on specific I/O Lines

SYNOPSIS

TDRV012_STATUS tdrv012WaitLow
(

TDRV012_HANDLE hdl,
unsigned int mask,
int timeout,
unsigned int *pIoValue,
unsigned int *pStatus

)

DESCRIPTION

This function blocks until at least one of the specified LOW events or a timeout occurs.

PARAMETERS

handle
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

mask
This parameter specifies on which input line the LOW transition should occur to trigger an
event. Multiple input lines may be specified. Bit 0 of this value corresponds to the first I/O line,
bit 1 corresponds to the second I/O line and so on.

timeout
This parameter specifies the time the function should wait for the event. The timeout is specified
in milliseconds. Use -1 to wait indefinitely for the event.

pIoValue
This value is a pointer to an unsigned int 32bit data buffer which returns the state of the input
lines at the moment the event is served by the interrupt service routine. Keep in mind that there
is a system-dependent interrupt latency, so it is not guaranteed that this value is the actual input
state at the event.

pStatus
This parameter is a pointer to an unsigned int 32bit data buffer which returns on which input
lines a LOW transition has occurred for the current wait job. This parameter is a bitmask, where
bit 0 corresponds to I/O line 0, bit 1 corresponds to I/O line 1 and so on.

TDRV012-SW-82 - Linux Device Driver Page 30 of 33

EXAMPLE

#include <tdrv012api.h>

TDRV012_HANDLE hdl;
TDRV012_STATUS result;
unsigned int IoValue;
unsigned int Status;

/*
** wait at least 1000ms for LOW transition events:
** LOW transition on I/O line 31
*/
result = tdrv012WaitLow(

hdl,
(1 << 31),
1000,
&IoValue,
&Status

);
if (result == TDRV012_OK)
{

printf(“ Current I/O status : 0x%08X\n”, IoValue);
printf(“ LOW transition status: 0x%08X\n”, Status);

} else {
/* handle error */

}

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV012_ERR_INVALID_HANDLE The specified TDRV012_HANDLE is invalid.
TDRV012_ERR_BUSY Too many concurrent wait jobs pending (max. 100)
TDRV012_ERR_TIMEOUT Timeout. None of the specified events occurred.

Other returned error codes are system error conditions.

TDRV012-SW-82 - Linux Device Driver Page 31 of 33

3.2.10 tdrv012WaitAny

NAME

tdrv012WaitAny – Wait for HIGH or LOW Transitions on specific I/O Lines

SYNOPSIS

TDRV012_STATUS tdrv012WaitAny
(

TDRV012_HANDLE hdl,
unsigned int mask,
int timeout,
unsigned int *pIoValue,
unsigned int *pStatus

)

DESCRIPTION

This function blocks until at least one of the specified HIGH or LOW events or a timeout occurs.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

mask
This parameter specifies on which input line the HIGH or LOW transition should occur to trigger
an event. Multiple input lines may be specified. Bit 0 of this value corresponds to the first I/O
line, bit 1 corresponds to the second I/O line and so on.

timeout
This parameter specifies the time the function should wait for the event. The timeout is specified
in milliseconds, although the granularity is in seconds. Use -1 to wait indefinitely for the event.

pIoValue
This value is a pointer to an unsigned int 32bit data buffer which returns the state of the input
lines at the moment the event is served by the interrupt service routine. Keep in mind that there
is a system-dependent interrupt latency, so it is not guaranteed that this value is the actual input
state at the event.

pStatus
This parameter is a pointer to an unsigned int 32bit data buffer which returns on which input
lines a HIGH or LOW transition has occurred for the current wait job. This parameter is a
bitmask, where bit 0 corresponds to I/O line 0, bit 1 corresponds to I/O line 1 and so on. It is not
possible to distinguish between a HIGH or LOW event. To do this, use tdrv012waitEvent()
instead.

TDRV012-SW-82 - Linux Device Driver Page 32 of 33

EXAMPLE

#include <tdrv012api.h>

TDRV012_HANDLE hdl;
TDRV012_STATUS result;
unsigned int IoValue;
unsigned int Status;

/*
** wait at least 1000ms for HIGH or LOW transition events:
** any transition on I/O line 0
*/
result = tdrv012WaitAny(

hdl,
(1 << 0),
1000,
&IoValue,
&Status

);
if (result == TDRV012_OK)
{

printf(“ Current I/O status : 0x%08X\n”, IoValue);
printf(“ transition status : 0x%08X\n”, Status);

} else {
/* handle error */

}

RETURNS

On success, TDRV012_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TDRV012_ERR_INVALID_HANDLE The specified TDRV012_HANDLE is invalid.
TDRV012_ERR_BUSY Too many concurrent wait jobs pending (max. 100)
TDRV012_ERR_TIMEOUT Timeout. None of the specified events occurred.

Other returned error codes are system error conditions.

TDRV012-SW-82 - Linux Device Driver Page 33 of 33

4 Diagnostic
If the TDRV012 does not work properly it is helpful to get some status information from the driver
respective kernel.

The Linux /proc file system provides additional information about kernel, resources, drivers, devices
and so on. The following screen dumps display information of a correct running TDRV012 driver (see
also the proc man pages).

lspci -v
...
04:02.0 Signal processing controller: TEWS Technologies GmbH Device 02ab

Subsystem: TEWS Technologies GmbH Device 000a
Flags: medium devsel, IRQ 17
Memory at febefc00 (32-bit, non-prefetchable) [size=128]
I/O ports at ec00 [size=128]
Memory at febef800 (32-bit, non-prefetchable) [size=256]
Kernel driver in use: TEWS TECHNOLOGIES - TDRV012 Device Driver
Kernel modules: tdrv012drv

...

cat /proc/devices
Character devices:

1 mem
2 pty
. . .

136 pts
162 raw

. . .
248 tdrv012drv

cat /proc/iomem
00000000-0009fbff : System RAM

. . .
feb00000-febfffff : PCI Bus 0000:04

febff000-febff0ff : 0000:04:02.0
febff000-febff0ff : TDRV012

. . .

