
The Embedded I/O Company

TPMC550-SW-65
Windows Device Driver

8/4 Channels of Isolated 12-Bit D/A

Version 2.0.x

User Manual
Issue 2.0.0
June 2011

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany

Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com www.tews.com

TPMC550-SW-65 – Windows Device Driver Page 2 of 31

TPMC550-SW-65
Windows Device Driver

8/4 Channels of Isolated 12-Bit D/A

Supported Modules:
TPMC550

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2003-2011 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0 First Issue March 28, 2003
1.0.1 General revision, new address TEWS LLC November 11, 2008
2.0.0 Windows7 support and API functions added June 14, 2011

TPMC550-SW-65 – Windows Device Driver Page 3 of 31

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Software Installation ...5
2.1.1 Windows 2000 / XP..5
2.1.2 Windows 7..6

2.2 Confirming Driver Installation ...6
3 API DOCUMENTATION ... 7

3.1 General Functions...7
3.1.1 tpmc550Open...7
3.1.2 tpmc550Close ..9

3.2 Device Access Functions...11
3.2.1 tpmc550DacWrite...11
3.2.2 tpmc550DacWriteMulti ...13
3.2.3 tpmc550SeqSetup..15
3.2.4 tpmc550SeqStart ...18
3.2.5 tpmc550SeqStop..20
3.2.6 tpmc550SeqWrite...22
3.2.7 tpmc550SeqFlush ..25
3.2.8 tpmc550SeqStatus...27
3.2.9 tpmc550GetModuleInfo..30

TPMC550-SW-65 – Windows Device Driver Page 4 of 31

1 Introduction
The TPMC550-SW-65 Windows device driver is a kernel mode driver which allows the operation of
supported hardware modules on an Intel or Intel-compatible Windows operating system. Supported
Windows versions are:

Windows 2000
Windows XP
Windows XP Embedded
Windows 7 (32bit and 64bit)

The TPMC550-SW-65 device driver supports the following features:

writing and converting D/A values to a specified channel
simultaneous D/A conversion on selected channels
sequencer facility with configurable software ring buffer
reading module configuration (voltage range and correction data)

The TPMC550-SW-65 supports the modules listed below:

TPMC550 8/4 Channels of Isolated 12 bit D/A PMC

To get more information about the features and use of TPMC550 devices it is recommended to read
the manuals listed below.

TPMC550 User manual

TPMC550-SW-65 – Windows Device Driver Page 5 of 31

2 Installation
Following files are located in directory TPMC550-SW-65 on the distribution media:

i386\ Directory containing driver files for 32bit Windows versions
amd64\ Directory containing driver files for 64bit Windows versions
installer_32bit.exe Installation tool for 32bit systems (Windows XP or later)
installer_64bit.exe Installation tool for 64bit systems (Windows XP or later)
tpmc550.inf Windows installation script
tpmc550.h Header file with IOCTL codes and structure definitions
example\tpmc550exa.c Example application
api\tpmc550api.c Application Programming Interface source
api\tpmc550api.h Application Programming Interface header
TPMC550-SW-65-2.0.0.pdf This document
Release.txt Information about the Device Driver Release
ChangeLog.txt Release history

2.1 Software Installation

2.1.1 Windows 2000 / XP
This section describes how to install the TPMC550 Device Driver on a Windows 2000 / XP operating
system.

After installing the TPMC550 card(s) and boot-up your system, Windows 2000 / XP setup will show a
"New hardware found" dialog box.

1. The "Upgrade Device Driver Wizard" dialog box will appear on your screen.
Click "Next" button to continue.

2. In the following dialog box, choose "Search for a suitable driver for my device".
Click "Next" button to continue.

3. Insert the TPMC550 driver media; select "Disk Drive" in the dialog box.
Click "Next" button to continue.

4. Now the driver wizard should find a suitable device driver on the media.
Click "Next" button to continue.

5. Complete the upgrade device driver and click "Finish" to take all the changes effect.

6. Now copy all needed files (tpmc550.h and API files) to the desired target directories.

After successful installation the TPMC550 device driver will start immediately and creates devices
(TPMC550_1, TPMC550_2 ...) for all recognized TPMC550 modules.

TPMC550-SW-65 – Windows Device Driver Page 6 of 31

2.1.2 Windows 7
This section describes how to install the TPMC550-SW-65 Device Driver on a Windows 7 (32bit or
64bit) operating system.

Depending on the operating system type, execute the installer binaries for either 32bit or 64bit
systems. This will install all required driver files using an installation wizard.

Copy needed files (tpmc550.h and API files) to desired target directory.

After successful installation a device is created for each module found (TPMC550_1, TPMC550_2 ...).

2.2 Confirming Driver Installation
To confirm that the driver has been properly loaded, perform the following steps:

1. Open the Windows Device Manager:

a. For Windows 2000 / XP, open the "Control Panel" from "My Computer" and click the
"System" icon and choose the "Hardware" tab, and then click the "Device Manager"
button.

b. For Windows 7, open the "Control Panel" from "My Computer" and then click the
"Device Manager" entry.

2. Click the "+" in front of "Embedded I/O".
The driver "TEWS TECHNOLOGIES – TPMC550 8(4) Channel 12-Bit D/A (TPMC550)"
should appear for each installed device.

TPMC550-SW-65 – Windows Device Driver Page 7 of 31

3 API Documentation
3.1 General Functions

3.1.1 tpmc550Open

NAME

tpmc550Open – Opens a Device

SYNOPSIS

TPMC550_HANDLE tpmc550Open
(

char *DeviceName
);

DESCRIPTION

Before I/O can be performed to a device, a file descriptor must be opened by a call to this function.

PARAMETERS

DeviceName
This parameter points to a null-terminated string that specifies the name of the device.

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;

/*
** open file descriptor to device
*/
hdl = tpmc550Open(“\\\\.\\TPMC550_1”);
if (hdl == NULL)
{

/* handle open error */
}

TPMC550-SW-65 – Windows Device Driver Page 8 of 31

RETURNS

A device handle, or NULL if the function fails. To get extended error information, call GetLastError.

ERROR CODES

All error codes are standard error codes set by the I/O system.

TPMC550-SW-65 – Windows Device Driver Page 9 of 31

3.1.2 tpmc550Close

NAME

tpmc550Close – Closes a Device

SYNOPSIS

TPMC550_STATUS tpmc550Close
(

TPMC550_HANDLE hdl
);

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

/*
** close file descriptor to device
*/
result = tpmc550Close(hdl);

if (result != TPMC550_OK)
{

/* handle close error */
}

TPMC550-SW-65 – Windows Device Driver Page 10 of 31

RETURNS

On success TPMC550_OK, or an appropriate error code.

ERROR CODES

All error codes are standard error codes set by the I/O system.

TPMC550-SW-65 – Windows Device Driver Page 11 of 31

3.2 Device Access Functions

3.2.1 tpmc550DacWrite

NAME

tpmc550DacWrite – write D/A value to specified channel

SYNOPSIS

TPMC550_STATUS tpmc550DacWrite
(

TPMC550_HANDLE hdl,
int channel,
unsigned int flags,
short value

);

DESCRIPTION

This function writes a new value to a specific channel and starts D/A conversion immediately in
transparent mode

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

channel
This argument specifies the DAC channel which shall be updated. Possible values are 1 up to
the number of available DAC channels of the specific module.

flags
This argument specifies a set of bit flags that control the D/A conversion:

Value Description
TPMC550_CORR Perform an offset and gain correction with

factory calibration data stored in the TPMC550
EEPROM.

value
This argument specifies the new 12-bit D/A value. Valid data range depends on the voltage
range of the specified channel (0…4095 for 0...10V voltage range and -2048…2047 for +/-10V
voltage range).

TPMC550-SW-65 – Windows Device Driver Page 12 of 31

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

result = tpmc550DacWrite(hdl, 1, TPMC550_CORR, 1234);

if (result != TPMC550_OK)
{

/* handle error */
}

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.
TPMC550_ERR_RANGE Invalid channel number
TPMC550_ERR_TIMEOUT Timeout during D/A conversion
TPMC550_ERR_BUSY This error occurs if the sequencer is still running.

Please stop the sequencer before executing this
function.

TPMC550-SW-65 – Windows Device Driver Page 13 of 31

3.2.2 tpmc550DacWriteMulti

NAME

tpmc550DacWriteMulti – write D/A value to multiple channels

SYNOPSIS

TPMC550_STATUS tpmc550DacWriteMulti
(

TPMC550_HANDLE hdl,
unsigned int ChannelMask,
unsigned int flags,
short values[MAX_CHAN]

);

DESCRIPTION

This function writes new values to specified channels and starts D/A conversion immediately
(transparent mode) or simultaneously (latched mode).

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

ChannelMask
This argument selects DAC channels which shall be updated. A set (1) bit specifies that the
corresponding channel shall be updated. Bit 0 corresponds to the first DAC channel, bit 1
corresponds to the second DAC channel and so on.

flags
This argument specifies a set of bit flags that control the D/A conversion:

Value Description
TPMC550_CORR Perform an offset and gain correction with

factory calibration data stored in the TPMC550
EEPROM for all selected channels.

TPMC550_SIMCONV Start conversion of selected channels in latched
mode and update analog outputs
simultaneously.

values
This array contains the new 12-bit D/A values. Valid data range depends on the voltage range
of the specified channel (0…4095 for 0...10V voltage range and -2048…2047 for +/-10V voltage
range).

TPMC550-SW-65 – Windows Device Driver Page 14 of 31

Array index 0 corresponds to the first DAC channel, array index 1 corresponds to the second
DAC channel and so on. Only channels selected for update (ChannelMask) will be modified.

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;
unsigned int ChannelMask;
unsigned int flags;
short values[MAX_CHAN];

// Update channel 1, 4 and 8 simultaneously with corrected D/A values
ChannelMask = (1<<0) | (1<<3) | (1<<7);
flags = TPMC550_CORR | TPMC550_SIMCONV;
value[0] = 111; // channel 1
value[3] = 444; // channel 4
value[7] = 888; // channel 8

result = tpmc550DacWriteMulti(hdl, ChannelMask, flags, values);

if (result != TPMC550_OK)
{

/* handle error */
}

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.
TPMC550_ERR_RANGE Invalid channel number
TPMC550_ERR_TIMEOUT Timeout during D/A conversion
TPMC550_ERR_BUSY This error occurs if the sequencer is still running.

Please stop the sequencer before executing this
function.

TPMC550-SW-65 – Windows Device Driver Page 15 of 31

3.2.3 tpmc550SeqSetup

NAME

tpmc550SeqSetup – Setup sequencer facility

SYNOPSIS

TPMC550_STATUS tpmc550SeqSetup
(

TPMC550_HANDLE hdl,
int CycleTime,
int NumActiveChannels,
int NumBufTuples,
int ChannelAllocation[MAX_CHAN],
unsigned int flags

);

DESCRIPTION

This function configures the sequencer facility and allocates memory for the sequencer software ring
buffer. The behaviour of the sequencer facility is controlled by a set of bit flags which are described
below.

Basically the sequencer will perform a D/A conversion on active channels in a deterministic time
period controlled by a cycle timer or the duration of the conversion itself. To be sure that D/A data will
be available for the next cycle just in-time, data for the sequencer will be provided by a configurable
ring buffer. The ring buffer can be asynchronously filled by the application program.

The sequencer facility provides two operating modes. In loop mode (TPMC550_LOOP) the buffer will
be filled completely with new data (e.g. wave form). The contents of the buffer will be output
continuously in a loop. In normal mode (TPMC550_LOOP is not set) the application program must
provide new data for every cycle. If the buffer is empty then the sequencer will stop and it holds the
last output value until new data arrives.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

CycleTime
This argument specifies the sequencer cycle time in steps of 100 μs. This argument is only
relevant if the flag TPMC550_TIMERMODE is set.

NumActiveChannels
This argument specifies the number of active channels. Valid range is 1 up to the number of
available channels (4 or 8).

TPMC550-SW-65 – Windows Device Driver Page 16 of 31

NumBufTuples
This argument specifies the size of the sequencer software ring buffer. In this case size is not
the number of bytes to allocate but rather the number of tuples (data for all active channels per
cycle).

ChannelAllocation
This argument specifies the channel number of active channels and their enumeration inside a
tuple. The function tpmc550SeqWrite awaits new data for active channels in this order. The first
array element contains the channel number (1..n) of the first active channel. The second array
element the channel number of the second active channel and so forth. Unused array elements
can be left undefined.

flags
This argument specifies a set of bit flags that control the sequencer operation:

Value Description
TPMC550_TIMERMODE If set, the cycle of D/A conversions will be

controlled by the sequencer timer in steps of
100 microseconds; otherwise the sequencer will
run in continuous mode as fast as possible
(based on the conversion time).

TPMC550_LOOP If this flag is set (loop mode) the ring buffer
never becomes empty. Once completely filled
the sequencer will continuously get data out of
the buffer for the next conversion.
If this flag is not set (normal mode) and the
buffer becomes empty then the sequencer will
stop and it holds the last output value until new
data arrives.

TPMC550_CORR Perform an offset and gain correction with
factory calibration data stored in the TPMC550
EEPROM for all selected channels.

TPMC550_SIMCONV Start conversion of active channels in latched
mode and update analog outputs
simultaneously.

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;
int ChannelAllocation[MAX_CHAN];
unsigned int flags;

// Setup the sequencer with 2 active channels (1 and 4) in timer mode with
// 1 ms cycle time. The sequencer buffer shall store data tuples for
// up to 100 cycles.

ChannelAllocation[0] = 1;

TPMC550-SW-65 – Windows Device Driver Page 17 of 31

ChannelAllocation[1] = 4;
flags = TPMC550_TIMERMODE | TPMC550_CORR | TPMC550_SIMCONV;

result = tpmc550SeqSetup(hdl, 10, 2, 100, ChannelAllocation, flags);

if (result != TPMC550_OK)
{

/* handle error */
}

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.
TPMC550_ERR_RANGE Invalid channel number or invalid number of

channels.
TPMC550_ERR_NOMEM Unable to allocate memory for the ring buffer.
TPMC550_ERR_BUSY This error occurs if the sequencer is still running.

Please stop the sequencer before executing this
function.

TPMC550-SW-65 – Windows Device Driver Page 18 of 31

3.2.4 tpmc550SeqStart

NAME

tpmc550SeqStart – start sequencer facility

SYNOPSIS

TPMC550_STATUS tpmc550SeqStart
(

TPMC550_HANDLE hdl
);

DESCRIPTION

This function starts the sequencer facility. Before calling this function the sequencer must be setup
with tpmc550SeqSetup und the ring buffer must be filled with tpmc550SeqWrite.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

// start the seuencer
result = tpmc550SeqStart(hdl);

if (result != TPMC550_OK)
{

/* handle error */
}

TPMC550-SW-65 – Windows Device Driver Page 19 of 31

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.
TPMC550_ERR_NOT_READY The sequencer facility was not properly configured.

Execute the function tpmc550SeqSetup first.
TPMC550_ERR_NODATA No data is available in the ring buffer to start the

sequencer facility. Use the function
tpmc550SeqWrite to write at least one data tuple
before starting the sequencer.

TPMC550-SW-65 – Windows Device Driver Page 20 of 31

3.2.5 tpmc550SeqStop

NAME

tpmc550SeqStop – stop the sequencer facility

SYNOPSIS

TPMC550_STATUS tpmc550SeqStop
(

TPMC550_HANDLE hdl
);

DESCRIPTION

This function stops the sequencer facility. All allocated resources (e.g. ring buffer memory) will be
freed.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

// stop the sequencer
result = tpmc550SeqStop(hdl);

if (result != TPMC550_OK)
{

/* handle error */
}

TPMC550-SW-65 – Windows Device Driver Page 21 of 31

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

TPMC550-SW-65 – Windows Device Driver Page 22 of 31

3.2.6 tpmc550SeqWrite

NAME

tpmc550SeqWrite – write new sequencer data

SYNOPSIS

TPMC550_STATUS tpmc550SeqWrite
(

TPMC550_HANDLE hdl,
int size,
short *values,
int *WrittenSize

);

DESCRIPTION

This function writes new data to the sequencers data buffer. The provided data buffer must always
contain new data for all active channels (tuple). The number of tuples per write must be at least one
up to “unlimited”. This function will always write as many tuples as possible. If the buffer becomes full
the function will return immediately with the error TPMC550_ERR_BUF_FULL. The number of written
bytes will be returned in a variable pointed to by WrittenSize.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

size
This argument specifies the size (in bytes) of the data buffer to write.

values
This argument is a pointer to an array of short variables that contains data for all active
channels for at least one sequencer cycle (tuple). Despite of the declaration as simple short
pointer this array is treated as a two-dimensional array with variable dimensions. The rows of
the array represent the number of tuples and the columns the number of active channels. A
declaration of this array will look like this: data[tuples][channels].

WrittenSize
This argument is a pointer to an int variable where the number of written bytes is returned. In
case of the error TPMC550_ERR_BUF_FULL this value can be used to adjust the buffer start
pointer for subsequent writes.

TPMC550-SW-65 – Windows Device Driver Page 23 of 31

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;
int WrittenSize;
short ForOneCycle[4];
short ForHundredCycles[100][4];

// Fill new data into the data buffers
ForHundredCycles[0][0] = 1; // first cycle, first channel
ForHundredCycles[0][1] = 2; // first cycle, second channel
// ...
ForHundredCycles[1][0] = 11; // second cycle, first channel
// ...
ForHundredCycles[99][3] = 1234; // 100th cycle, last channel

// Write new data for 100 cycles and 4 active channels (100 * 4 values)

result = tpmc550SeqWrite(
hdl,
sizeof(ForHundredCycles),
(short*)ForHundredCycles,
&WrittenSize
);

if (result != TPMC550_OK)
{

/* handle error */
if (result == TPMC550_ERR_BUF_FULL)
{

/* send remaining data later */
}

}

// Write new data for 1 cycle and 4 active channels (4 values)

result = tpmc550SeqWrite(
hdl,
sizeof(ForOneCycle),
ForOneCycle,
&WrittenSize
);

TPMC550-SW-65 – Windows Device Driver Page 24 of 31

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.
TPMC550_ERR_NOT_READY The sequencer is not running
TPMC550_ERR_BUF_TOO_SMALL The buffer does not contain enough data for all

active channels.
TPMC550_ERR_NOMEM The passed data buffer does not fit into the

configured sequencer buffer. This error is only
relevant in loop mode (TPMC550_LOOP)

TPMC550_ERR_BUF_FULL The sequencer buffer is full. Not all data was
written to the buffer. Use the contents of
WrittenSize to adjust the data pointer to write the
remaining data tuples.

TPMC550-SW-65 – Windows Device Driver Page 25 of 31

3.2.7 tpmc550SeqFlush

NAME

tpmc550SeqFlush – flush the sequencer ring buffer

SYNOPSIS

TPMC550_STATUS tpmc550SeqFlush
(

TPMC550_HANDLE hdl
);

DESCRIPTION

This function flushes the ring buffer of the sequencer facility. The analog output of active channels will
hold the last converted data until new data is written with the tpmc550SeqWrite function.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

// flush the sequencer ring buffer
result = tpmc550SeqFlush(hdl);

if (result != TPMC550_OK)
{

/* handle error */
}

TPMC550-SW-65 – Windows Device Driver Page 26 of 31

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

TPMC550-SW-65 – Windows Device Driver Page 27 of 31

3.2.8 tpmc550SeqStatus

NAME

tpmc550SeqStatus – get sequencer status and statistic information

SYNOPSIS

TPMC550_STATUS tpmc550SeqStatus
(

TPMC550_HANDLE hdl,
int *OperatingState,
int *status,
int *CycleCount,
int *UnderflowCount,
int *EmptyCount

);

DESCRIPTION

This function reads sequencer status and statistic information from the specified device.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

OperatingState
This argument is a pointer to an int variable where the current operating state of the sequencer
is returned. Possible operating states are:

Value Description
TPMC550_STOPPED The sequencer is stopped.
TPMC550_READY The sequencer facility is configured and ready to

start.
TPMC550_RUNNING The sequencer is running.

TPMC550-SW-65 – Windows Device Driver Page 28 of 31

status
This argument is a pointer to an int variable where current error/status of the sequencer is
returned. After calling this function the error/status code will be set to TPMC550_SEQ_OK.
Possible error/status codes are:

Value Description
TPMC550_SEQ_OK Sequencer is working fine. No errors detected.
TPMC550_SEQ_UNDERFLOW The sequencer hardware has detected a data

underflow condition. The driver was not able to
provide new data within a sequencer timer cycle.

TPMC550_SEQ_NODATA No data available in the ring buffer for output.

CycleCount
This argument is a pointer to an int variable where the total number of sequencer cycles since
sequencer start is returned.

UnderflowCount
This argument is a pointer to an int variable where the total number of sequencer underflows
since sequencer start is returned.

EmptyCount
This argument is a pointer to an int variable where the total number of empty buffer cycles since
sequencer start is returned.

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;
int OperatingState;
int status;
int CycleCount;
int UnderflowCount;
int EmptyCount;

// Read sequencer status and statistic information

result = tpmc550SeqStatus(hdl, &OperatingState, &status, &CycleCount,
&UnderflowCount, &EmptyCount);

if (result != TPMC550_OK)
{

/* handle error */
}

TPMC550-SW-65 – Windows Device Driver Page 29 of 31

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

TPMC550-SW-65 – Windows Device Driver Page 30 of 31

3.2.9 tpmc550GetModuleInfo

NAME

tpmc550GetModuleInfo – Get module information

SYNOPSIS

TPMC550_STATUS tpmc550GetModuleInfo
(

TPMC550_HANDLE hdl,
int *NumChan,
int bipolar[MAX_CHAN],
char OffsCorr[MAX_CHAN],
char GainCorr[MAX_CHAN]

);

DESCRIPTION

This function reads module information data from the specified device.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

NumChan
This argument is a pointer to an int variable where the number of available DAC channels is
returned.

bipolar
This argument is a pointer to an int array where the configured voltage range of each DAC
channel is returned as boolean value. The array element bipolar[0] contains the range stetting
for DAC channel 1, bipolar[1] for DAC channel 2 and so forth. If the corresponding value is
TRUE then the voltage range of the channel is configured to +/- 10V output (bipolar); otherwise
it is configured to 0…10V output voltage range.

OffsCorr
This argument is a pointer to a char array where the factory programmed offset correction data
is returned. OffsCorr[0] contains correction data for DAC channel 1, OffsCorr[1] for DAC
channel 2 and so forth.

GainCorr
This argument is a pointer to a char array where the factory programmed gain correction data
are returned. GainCorr[0] contains correction data for DAC channel 1, GainCorr[1] for DAC
channel 2 and so forth.

TPMC550-SW-65 – Windows Device Driver Page 31 of 31

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;
int NumChan;
int bipolar[MAX_CHAN];
char OffsCorr[MAX_CHAN];
char GainCorr[MAX_CHAN];

// Get module information data

result = tpmc550GetModuleInfo(hdl, &NumChan, bipolar, OffsCorr, GainCorr);

if (result != TPMC550_OK)
{

/* handle error */
}

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

