
The Embedded I/O Company

TPMC550-SW-95
QNX6 - Neutrino Device Driver

8/4 Channel 12 Bit DAC PMC
Version 2.0.x

User Manual
Issue 2.0.0
August 2012

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany

Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com www.tews.com

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 2 of 31

TPMC550-SW-95
QNX6-Neutrino Device Driver

8/4 Channel 12 Bit DAC PMC

Supported Modules:

TPMC550

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2003-2012 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0 First Issue July 16, 2003
1.1 Introduction corrected November 10, 2003
2.0.0 General Revision, API description August 21, 2012

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 3 of 31

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Build the Device Driver...5
2.2 Build the API Library...5
2.3 Build the Example Application ..6
2.4 Start the Driver Process ...6

3 API DOCUMENTATION ... 7
3.1 General Functions...7

3.1.1 tpmc550Open ..7
3.1.2 tpmc550Close..9
3.1.3 tpmc550GetModuleInfo ...11

3.2 DAC Output Functions ...13
3.2.1 tpmc550DacWrite ..13
3.2.2 tpmc550DacWriteMulti...15

3.3 Sequencer Functions..17
3.3.1 tpmc550SeqSetup ...17
3.3.2 tpmc550SeqStart ...20
3.3.3 tpmc550SeqStop ...22
3.3.4 tpmc550SeqWrite ..24
3.3.5 tpmc550SeqFlush..27
3.3.6 tpmc550SeqStatus ..29

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 4 of 31

1 Introduction
The TPMC550-SW-95 QNX-Neutrino device driver allows the operation of the TPMC550 on QNX-
Neutrino operating systems.

The TPMC550 device driver is basically implemented as a user installable Resource Manager. An
Application Programming Interface (API) provides access to the driver functionality, and wraps the
standard file (I/O) functions (open, close and devctl).

The TPMC550-SW-95 device driver includes the following functions:

writing and converting D/A values to a specified channel
simultaneous D/A conversion on selected channels
sequencer facility with configurable software ring buffer
reading module configuration (voltage range and correction data)

The TPMC550-SW-95 supports the modules listed below:

TPMC550 8/4 Channels of Isolated 12 bit D/A PMC

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TPMC550 User Manual
TPMC550 Engineering Manual

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 5 of 31

2 Installation
Following files are located in the directory TPMC550-SW-95 on the distribution media:

TPMC550-SW-95-SRC.tar.gz GZIP compressed archive with driver source code
TPMC550-SW-95-2.0.0.pdf This manual in PDF format
ChangeLog.txt Release history
Release.txt Information about the Device Driver Release

The GZIP compressed archive TPMC550-SW-95-SRC.tar.gz contains the following files and
directories:

Directory path ‘tpmc550’:

/api/tpmc550api.c API source code
/api/tpmc550api.h API definitions for driver and application
/driver/tpmc550.c Driver source code
/driver/tpmc550.h Definitions and data structures for driver and application
/driver/tpmc550def.h Device driver include
/driver/node.c Queue management source code
/driver/node.h Queue management definitions
/example/tpmc550exa.c Example application

For installation copy the tar-archive into the /usr/src directory and unpack it (e.g. tar –xzvf
TPMC550-SW-95-SRC.tar.gz). After that the necessary directory structure for the automatic build
and the source files are available underneath the new directory called tpmc550. Copy the files
/driver/tpmc550.h and /api/tpmc550api.h into the directory /usr/include.

It is absolutely important to extract the TPMC550 driver archive in the /usr/src directory.
Otherwise the automatic build with make will fail.

2.1 Build the Device Driver
Change to the /usr/src/tpmc550/driver directory

Execute the Makefile:

make install

After successful completion the driver binary (tpmc550) will be installed in the /bin directory.

2.2 Build the API Library
Change to the /usr/src/tpmc550/api directory

Execute the Makefile:

make install

After successful completion the API library will be installed and available for later usage.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 6 of 31

2.3 Build the Example Application
Change to the /usr/src/tpmc550/example directory

Execute the Makefile:

make install
After successful completion the example binary (tpmc550exa) will be installed in the /bin directory.

2.4 Start the Driver Process
To start the TPMC550 device driver, you have to enter the process name with optional parameters
from the command shell or in the startup script.

Possible parameters are:

-v
For debugging purposes you can start the TPMC550 Resource Manager with the –v option. The
Resource Manager will print versatile information about TPMC550 configuration and command
execution on the terminal window.

Example:

The following startup call will start the TPMC550 device driver in verbose mode:

tpmc550 –v &

After the TPMC550 Resource Manager is started, it creates and registers a device for each found
hardware module. The devices are named /dev/tpmc550_x, where x is the number of the found
module.

/dev/tpmc550_0, /dev/tpmc550_1, ...

This pathname must be used in the application program to open a path to the desired TPMC550
channel device. Please refer to the corresponding description within this document.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 7 of 31

3 API Documentation
3.1 General Functions

3.1.1 tpmc550Open

NAME

tpmc550Open – opens a device.

SYNOPSIS

TPMC550_HANDLE tpmc550Open
(

char *DeviceName
)

DESCRIPTION

Before I/O can be performed to a device, a device descriptor must be opened by a call to this function.

PARAMETERS

DeviceName
This parameter points to a null-terminated string that specifies the name of the device. The
following device naming must be used:
Device
Number

Device Name

1 /dev/tpmc550_0
2 /dev/tpmc550_1

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 8 of 31

EXAMPLE

#include <tpmc550api.h>

TPMC550_HANDLE hdl;

/*
** open the specified device
*/
hdl = tpmc550Open(“/dev/tpmc550_0”);
if (hdl == NULL)
{

/* handle open error */
}

RETURNS

A device handle, or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 9 of 31

3.1.2 tpmc550Close

NAME

tpmc550Close – closes a device.

SYNOPSIS

TPMC550_STATUS tpmc550Close
(

TPMC550_HANDLE hdl
)

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include <tpmc550api.h>

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

/*
** close the device
*/
result = tpmc550Close(hdl);
if (result != TPMC550_OK)
{

/* handle close error */
}

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 10 of 31

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC550_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 11 of 31

3.1.3 tpmc550GetModuleInfo

NAME

tpmc550GetModuleInfo – Get module information

SYNOPSIS

TPMC550_STATUS tpmc550GetModuleInfo
(

TPMC550_HANDLE hdl,
int *NumChan,
int bipolar[TPMC550_MAX_CHAN],
int OffsCorr[TPMC550_MAX_CHAN],
int GainCorr[TPMC550_MAX_CHAN]

);

DESCRIPTION

This function reads module information data from the specified device.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

NumChan
This argument is a pointer to an int variable where the number of available DAC channels is
returned.

bipolar
This argument is a pointer to an int array where the configured voltage range of each DAC
channel is returned as boolean value. The array element bipolar[0] contains the range stetting
for DAC channel 1, bipolar[1] for DAC channel 2 and so forth. If the corresponding value is
TRUE then the voltage range of the channel is configured to +/- 10V output (bipolar); otherwise
it is configured to 0…10V output voltage range.

OffsCorr
This argument is a pointer to an int array where the factory programmed offset correction data is
returned. OffsCorr[0] contains correction data for DAC channel 1, OffsCorr[1] for DAC channel 2
and so forth.

GainCorr
This argument is a pointer to an int array where the factory programmed gain correction data
are returned. GainCorr[0] contains correction data for DAC channel 1, GainCorr[1] for DAC
channel 2 and so forth.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 12 of 31

EXAMPLE

#include <tpmc550api.h>

TPMC550_HANDLE hdl;
TPMC550_STATUS result;
int NumChan;
int bipolar[TPMC550_MAX_CHAN];
int OffsCorr[TPMC550_MAX_CHAN];
int GainCorr[TPMC550_MAX_CHAN];

/* Get module information data */

result = tpmc550GetModuleInfo(hdl, &NumChan, bipolar, OffsCorr, GainCorr);

if (result != TPMC550_OK)
{

/* handle error */
}

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 13 of 31

3.2 DAC Output Functions

3.2.1 tpmc550DacWrite

NAME

tpmc550DacWrite – write D/A value to specified channel

SYNOPSIS

TPMC550_STATUS tpmc550DacWrite
(

TPMC550_HANDLE hdl,
int channel,
unsigned int flags,
short value

);

DESCRIPTION

This function writes a new value to a specific channel and starts D/A conversion immediately in
transparent mode

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

channel
This argument specifies the DAC channel which shall be updated. Possible values are 1 up to
the number of available DAC channels of the specific module.

flags
This argument specifies a set of bit flags that control the D/A conversion:

Value Description
TPMC550_CORR Perform an offset and gain correction with factory

calibration data stored in the TPMC550
EEPROM.

value
This argument specifies the new 12-bit D/A value. Valid data range depends on the voltage
range of the specified channel (0…4095 for 0...10V voltage range and -2048…2047 for +/-10V
voltage range).

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 14 of 31

EXAMPLE

#include <tpmc550api.h>

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

result = tpmc550DacWrite(hdl, 1, TPMC550_CORR, 1234);

if (result != TPMC550_OK)
{

/* handle error */
}

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.
TPMC550_ERR_RANGE Invalid channel number
TPMC550_ERR_TIMEOUT Timeout during D/A conversion
TPMC550_ERR_BUSY This error occurs if the sequencer is still running.

Please stop the sequencer before executing this
function.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 15 of 31

3.2.2 tpmc550DacWriteMulti

NAME

tpmc550DacWriteMulti – write D/A value to multiple channels

SYNOPSIS

TPMC550_STATUS tpmc550DacWriteMulti
(

TPMC550_HANDLE hdl,
unsigned int ChannelMask,
unsigned int flags,
short values[TPMC550_MAX_CHAN]

);

DESCRIPTION

This function writes new values to specified channels and starts D/A conversion immediately
(transparent mode) or simultaneously (latched mode).

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

ChannelMask
This argument selects DAC channels which shall be updated. A set (1) bit specifies that the
corresponding channel shall be updated. Bit 0 corresponds to the first DAC channel, bit 1
corresponds to the second DAC channel and so on.

flags
This argument specifies a set of bit flags that control the D/A conversion:

Value Description
TPMC550_CORR Perform an offset and gain correction with factory

calibration data stored in the TPMC550
EEPROM for all selected channels.

TPMC550_SIMCONV Start conversion of selected channels in latched
mode and update analog outputs simultaneously.

values
This array contains the new 12-bit D/A values. Valid data range depends on the voltage range
of the specified channel (0…4095 for 0...10V voltage range and -2048…2047 for +/-10V voltage
range).
Array index 0 corresponds to the first DAC channel, array index 1 corresponds to the second
DAC channel and so on. Only channels selected for update (ChannelMask) will be modified.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 16 of 31

EXAMPLE

#include <tpmc550api.h>

TPMC550_HANDLE hdl;
TPMC550_STATUS result;
unsigned int ChannelMask;
unsigned int flags;
short values[TPMC550_MAX_CHAN];

/* Update channel 1, 4 and 8 simultaneously with corrected D/A values */
ChannelMask = (1<<0) | (1<<3) | (1<<7);
flags = TPMC550_CORR | TPMC550_SIMCONV;
value[0] = 111; /* channel 1 */
value[3] = 444; /* channel 4 */
value[7] = 888; /* channel 8 */

result = tpmc550DacWriteMulti(hdl, ChannelMask, flags, values);

if (result != TPMC550_OK)
{

/* handle error */
}

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.
TPMC550_ERR_RANGE Invalid channel number
TPMC550_ERR_TIMEOUT Timeout during D/A conversion
TPMC550_ERR_BUSY This error occurs if the sequencer is still running.

Please stop the sequencer before executing this
function.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 17 of 31

3.3 Sequencer Functions

3.3.1 tpmc550SeqSetup

NAME

tpmc550SeqSetup – Setup sequencer facility

SYNOPSIS

TPMC550_STATUS tpmc550SeqSetup
(

TPMC550_HANDLE hdl,
int CycleTime,
int NumActiveChannels,
int NumBufTuples,
int ChannelAllocation[TPMC550_MAX_CHAN],
unsigned int flags

);

DESCRIPTION

This function configures the sequencer facility and allocates memory for the sequencer software ring
buffer. The behaviour of the sequencer facility is controlled by a set of bit flags which are described
below.

Basically the sequencer will perform a D/A conversion on active channels in a deterministic time
period controlled by a cycle timer or the duration of the conversion itself. To be sure that D/A data will
be available for the next cycle just in-time, data for the sequencer will be provided by a configurable
ring buffer. The ring buffer can be asynchronously filled by the application program.

The sequencer facility provides two operating modes. In loop mode (TPMC550_LOOP) the buffer will
be filled completely with new data (e.g. wave form). The contents of the buffer will be output
continuously in a loop. In normal mode (TPMC550_LOOP is not set) the application program must
provide new data for every cycle. If the buffer is empty then the sequencer will stop and it holds the
last output value until new data arrives.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

CycleTime
This argument specifies the sequencer cycle time in steps of 100 μs. This argument is only
relevant if the flag TPMC550_TIMERMODE is set.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 18 of 31

NumActiveChannels
This argument specifies the number of active channels. Valid range is 1 up to the number of
available channels (4 or 8).

NumBufTuples
This argument specifies the size of the sequencer software ring buffer. In this case size is not
the number of bytes to allocate but rather the number of tuples (data for all active channels per
cycle).

ChannelAllocation
This argument specifies the channel number of active channels and their enumeration inside a
tuple. The function tpmc550SeqWrite awaits new data for active channels in this order. The first
array element contains the channel number (1...n) of the first active channel. The second array
element the channel number of the second active channel and so forth. Unused array elements
can be left undefined.

flags
This argument specifies a set of bit flags that control the sequencer operation:

Value Description
TPMC550_TIMERMODE If set, the cycle of D/A conversions will be

controlled by the sequencer timer in steps of
100 microseconds; otherwise the sequencer will
run in continuous mode as fast as possible
(based on the conversion time).

TPMC550_LOOP If this flag is set (loop mode) the ring buffer never
becomes empty. Once completely filled the
sequencer will continuously get data out of the
buffer for the next conversion.
If this flag is not set (normal mode) and the buffer
becomes empty then the sequencer will stop and
it holds the last output value until new data
arrives.

TPMC550_CORR Perform an offset and gain correction with factory
calibration data stored in the TPMC550
EEPROM for all selected channels.

TPMC550_SIMCONV Start conversion of active channels in latched
mode and update analog outputs simultaneously.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 19 of 31

EXAMPLE

#include <tpmc550api.h>

TPMC550_HANDLE hdl;
TPMC550_STATUS result;
int ChannelAllocation[TPMC550_MAX_CHAN];
unsigned int flags;

/* Setup the sequencer with 2 active channels (1 and 4) in timer mode */
/* with 1 ms cycle time. The sequencer buffer shall store data tuples */
/* for up to 100 cycles. */

ChannelAllocation[0] = 1;
ChannelAllocation[1] = 4;
flags = TPMC550_TIMERMODE | TPMC550_CORR | TPMC550_SIMCONV;

result = tpmc550SeqSetup(hdl, 10, 2, 100, ChannelAllocation, flags);

if (result != TPMC550_OK)
{

/* handle error */
}

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.
TPMC550_ERR_RANGE Invalid channel number or invalid number of

channels.
TPMC550_ERR_NOMEM Unable to allocate memory for the ring buffer.
TPMC550_ERR_BUSY This error occurs if the sequencer is still running.

Please stop the sequencer before executing this
function.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 20 of 31

3.3.2 tpmc550SeqStart

NAME

tpmc550SeqStart – start sequencer facility

SYNOPSIS

TPMC550_STATUS tpmc550SeqStart
(

TPMC550_HANDLE hdl
);

DESCRIPTION

This function starts the sequencer facility. Before calling this function the sequencer must be setup
with tpmc550SeqSetup und the ring buffer must be filled with tpmc550SeqWrite.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include <tpmc550api.h>

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

/* start the seuencer */
result = tpmc550SeqStart(hdl);

if (result != TPMC550_OK)
{

/* handle error */
}

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 21 of 31

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.
TPMC550_ERR_NOT_READY The sequencer facility was not properly configured.

Execute the function tpmc550SeqSetup first.
TPMC550_ERR_NODATA No data is available in the ring buffer to start the

sequencer facility. Use the function
tpmc550SeqWrite to write at least one data tuple
before starting the sequencer.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 22 of 31

3.3.3 tpmc550SeqStop

NAME

tpmc550SeqStop – stop the sequencer facility

SYNOPSIS

TPMC550_STATUS tpmc550SeqStop
(

TPMC550_HANDLE hdl
);

DESCRIPTION

This function stops the sequencer facility. All allocated resources (e.g. ring buffer memory) will be
freed.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include <tpmc550api.h>

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

/* stop the sequencer */
result = tpmc550SeqStop(hdl);

if (result != TPMC550_OK)
{

/* handle error */
}

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 23 of 31

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 24 of 31

3.3.4 tpmc550SeqWrite

NAME

tpmc550SeqWrite – write new sequencer data

SYNOPSIS

TPMC550_STATUS tpmc550SeqWrite
(

TPMC550_HANDLE hdl,
int size,
short *values,
int *WrittenSize

);

DESCRIPTION

This function writes new data to the sequencers data buffer. The provided data buffer must always
contain new data for all active channels (tuple). The number of tuples per write must be at least one
up to “unlimited”. This function will always write as many tuples as possible. If the buffer becomes full
the function will return immediately with the error TPMC550_ERR_BUF_FULL. The number of written
bytes will be returned in a variable pointed to by WrittenSize.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

size
This argument specifies the size (in bytes) of the data buffer to write.

values
This argument is a pointer to an array of short variables that contains data for all active
channels for at least one sequencer cycle (tuple). Despite of the declaration as simple short
pointer this array is treated as a two-dimensional array with variable dimensions. The rows of
the array represent the number of tuples and the columns the number of active channels. A
declaration of this array will look like this: data[tuples][channels].

WrittenSize
This argument is a pointer to an int variable where the number of written bytes is returned. In
case of the error TPMC550_ERR_BUF_FULL this value can be used to adjust the buffer start
pointer for subsequent writes.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 25 of 31

EXAMPLE

#include <tpmc550api.h>

TPMC550_HANDLE hdl;
TPMC550_STATUS result;
int WrittenSize;
short ForOneCycle[4];
short ForHundredCycles[100][4];

/* Fill new data into the data buffers */
ForHundredCycles[0][0] = 1; /* first cycle, first channel */
ForHundredCycles[0][1] = 2; /* first cycle, second channel */
...
ForHundredCycles[1][0] = 11; /* second cycle, first channel */
...
ForHundredCycles[99][3] = 1234; /* 100th cycle, last channel */

/* Write new data for 100 cycles and 4 active channels (100 * 4 values) */

result = tpmc550SeqWrite(
hdl,
sizeof(ForHundredCycles),
(short*)ForHundredCycles,
&WrittenSize
);

if (result != TPMC550_OK)
{

/* handle error */
if (result == TPMC550_ERR_BUF_FULL)
{

/* send remaining data later */
}

}

/* Write new data for 1 cycle and 4 active channels (4 values) */

result = tpmc550SeqWrite(
hdl,
sizeof(ForOneCycle),
ForOneCycle,
&WrittenSize
);

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 26 of 31

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.
TPMC550_ERR_NOT_READY The sequencer is not running
TPMC550_ERR_BUF_TOO_SMALL The buffer does not contain enough data for all

active channels.
TPMC550_ERR_NOMEM The passed data buffer does not fit into the

configured sequencer buffer. This error is only
relevant in loop mode (TPMC550_LOOP)

TPMC550_ERR_BUF_FULL The sequencer buffer is full. Not all data was written
to the buffer. Use the contents of WrittenSize to
adjust the data pointer to write the remaining data
tuples.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 27 of 31

3.3.5 tpmc550SeqFlush

NAME

tpmc550SeqFlush – flush the sequencer ring buffer

SYNOPSIS

TPMC550_STATUS tpmc550SeqFlush
(

TPMC550_HANDLE hdl
);

DESCRIPTION

This function flushes the ring buffer of the sequencer facility. The analog output of active channels will
hold the last converted data until new data is written with the tpmc550SeqWrite function.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include <tpmc550api.h>

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

/* flush the sequencer ring buffer */
result = tpmc550SeqFlush(hdl);

if (result != TPMC550_OK)
{

/* handle error */
}

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 28 of 31

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 29 of 31

3.3.6 tpmc550SeqStatus

NAME

tpmc550SeqStatus – get sequencer status and statistic information

SYNOPSIS

TPMC550_STATUS tpmc550SeqStatus
(

TPMC550_HANDLE hdl,
int *OperatingState,
int *status,
int *CycleCount,
int *UnderflowCount,
int *EmptyCount

);

DESCRIPTION

This function reads sequencer status and statistic information from the specified device.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

OperatingState
This argument is a pointer to an int variable where the current operating state of the sequencer
is returned. Possible operating states are:

Value Description
TPMC550_STOPPED The sequencer is stopped.
TPMC550_READY The sequencer facility is configured and ready to

start.
TPMC550_RUNNING The sequencer is running.

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 30 of 31

status
This argument is a pointer to an int variable where current error/status of the sequencer is
returned. After calling this function the error/status code will be set to TPMC550_SEQ_OK.
Possible error/status codes are:

Value Description
TPMC550_SEQ_OK Sequencer is working fine. No errors detected.
TPMC550_SEQ_UNDERFLOW The sequencer hardware has detected a data

underflow condition. The driver was not able to
provide new data within a sequencer timer cycle.

TPMC550_SEQ_NODATA No data available in the ring buffer for output.

CycleCount
This argument is a pointer to an int variable where the total number of sequencer cycles since
sequencer start is returned.

UnderflowCount
This argument is a pointer to an int variable where the total number of sequencer underflows
since sequencer start is returned.

EmptyCount
This argument is a pointer to an int variable where the total number of empty buffer cycles since
sequencer start is returned.

EXAMPLE

#include <tpmc550api.h>

TPMC550_HANDLE hdl;
TPMC550_STATUS result;
int OperatingState;
int status;
int CycleCount;
int UnderflowCount;
int EmptyCount;

/* Read sequencer status and statistic information */

result = tpmc550SeqStatus(hdl, &OperatingState, &status, &CycleCount,
&UnderflowCount, &EmptyCount);

if (result != TPMC550_OK)
{

/* handle error */
}

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 31 of 31

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

