
The Embedded I/O Company

TPMC551-SW-82
Linux Device Driver
8/4 Channel 16 Bit DAC

Version 1.2.x

User Manual
Issue 1.2.3

February 2012

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany

Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com www.tews.com

TPMC551-SW-82 - Linux Device Driver Page 2 of 24

TPMC551-SW-82
Linux Device Driver

8/4 Channel 16 Bit DAC

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2002-2012 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0 First Issue April 22, 2002
1.1 Parameter for TP551_IOCGREADPARAM changed May 13, 2002
1.2.0 Kernel 2.6.x Support March 21, 2005
1.2.1 File list Changed, description of installation modified

General revision
August 15, 2006

1.2.2 New Address TEWS LLC September 20, 2006
1.2.3 General Revision February 8, 2012

TPMC551-SW-82 - Linux Device Driver Page 3 of 24

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Build and install the Device Driver..5
2.2 Uninstall the Device Driver ..6
2.3 Install Device Driver into the running Kernel...6
2.4 Remove Device Driver from the running Kernel..6
2.5 Change Major Device Number ...7

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 8
3.1 open..8
3.2 close ...10
3.3 write..12
3.4 ioctl ...15

3.4.1 TP551_IOCGREADPARAM...17
3.4.2 TP551_IOCSSTOPSEQ ..19
3.4.3 TP551_IOCSSTARTSEQ ..20
3.4.4 TP551_IOCSWRITESEQ...22

4 DIAGNOSTIC.. 24

TPMC551-SW-82 - Linux Device Driver Page 4 of 24

1 Introduction
The TPMC551-SW-82 Linux device driver allows the operation of the TPMC551 PMC conforming to
the Linux I/O system specification. This includes a device-independent basic I/O interface with open(),
close(), write() and ioctl() functions.

Special I/O operation that do not fit to the standard I/O calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

The TPMC551-SW-82 device driver supports the following features:

write a new value to a selected DAC channel
use sequencer mode to continuously write to selected channels
correction of output values with the factory programmed correction data

The TPMC551-SW-82 device driver supports the modules listed below:

TPMC551 8/4 Channels of Isolated 16 bit D/A (PMC)

To get more information about the features and usage of TPMC551 devices it is recommended to read
the manuals listed below.

TPMC551 User Manual
TPMC551 Engineering Manual

TPMC551-SW-82 - Linux Device Driver Page 5 of 24

2 Installation
Following files are located on the distribution media:

Directory path ‘TPMC551-SW-82’:

TPMC551-SW-82-1.2.3.pdf This manual in PDF format
TPMC551-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
ChangeLog.txt Release history
Release.txt Release information

The GZIP compressed archive TPMC551-SW-82-SRC.tar.gz contains the following files and
directories:

Directory path ‘./tpmc551/’:

tpmc551.c Driver source code
tpmc551def.h Driver private include file
tpmc551.h Driver public include file for application program
Makefile Device driver make file
makenode Script to create device nodes on the file system
include/config.h Driver independent library header file
include/tpmodule.h Driver and kernel independent library header file
include/tpmodule.c Driver and kernel independent library source file
include/tpxxxhwdep.h HAL library header file
include/tpxxxhwdep.c HAL library source file
example/tpmc551exa.c Example application
example/Makefile Example application make file

In order to perform an installation, extract all files of the archive TPMC551-SW-82.tar.gz to the desired
target directory. The command ‘tar -xzvf TPMC551-SW-82-SRC.tar.gz’ will extract the files into the
local directory.

Login as root and change to the target directory

Copy tpmc551.h to /usr/include

2.1 Build and install the Device Driver
Login as root

Change to the target directory

To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

To update the device driver’s module dependencies, enter:

depmod -aq

TPMC551-SW-82 - Linux Device Driver Page 6 of 24

2.2 Uninstall the Device Driver
Login as root

Change to the target directory

To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

2.3 Install Device Driver into the running Kernel
To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tpmc551drv

After the first build or if you are using dynamic major device allocation it’s necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a device file system (devfs or sysfs with udev) then you have to skip
running the makenode script. Instead of creating device nodes from the script the driver itself
takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TPMC551 module found. The first
TPMC551 module can be accessed with device node /dev/tpmc551_0, the second with device node
/dev/tpmc551_1 and so on.

The assignment of device nodes to physical TPMC551 modules depends on the search order of the
PCI bus driver.

2.4 Remove Device Driver from the running Kernel
To remove the device driver from the running kernel login as root and execute the following
command:

modprobe –r tpmc551drv

If your kernel has enabled devfs or sysfs (udev), all /dev/tpmc551_x nodes will be automatically
removed from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tpmc551drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe –r again.

TPMC551-SW-82 - Linux Device Driver Page 7 of 24

2.5 Change Major Device Number
This paragraph is only for Linux kernels without DEVFS installed. The TPMC551 driver use dynamic
allocation of major device numbers per default. If this isn’t suitable for the application it’s possible to
define a major number for the driver.

To change the major number edit the file tpmc551def.h, change the following symbol to appropriate
value and enter make install to create a new driver.

TPMC551_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#define TPMC551_MAJOR 122

TPMC551-SW-82 - Linux Device Driver Page 8 of 24

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system.

3.1 open

NAME

open() opens a file descriptor.

SYNOPSIS

#include <fcntl.h>

int open
(

const char *filename,
int flags

)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file has to be opened. This is a bit mask. Create the value by the bitwise
OR of the appropriate parameters (using the | operator in C). See also the GNU C Library
documentation for more information about the open function and open flags.

EXAMPLE

int fd;

fd = open(“/dev/tpmc501_0”, O_RDWR);
if (fd < 0)
{

/* handle open error conditions */
}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

TPMC551-SW-82 - Linux Device Driver Page 9 of 24

ERRORS

Error code Description
E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TPMC551-SW-82 - Linux Device Driver Page 10 of 24

3.2 close

NAME

close() closes a file descriptor.

SYNOPSIS

#include <unistd.h>

int close
(

int filedes
)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0)
{

/* handle close error conditions */
}

RETURNS

The usual return value from close is 0. In case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

Error code Description
E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

TPMC551-SW-82 - Linux Device Driver Page 11 of 24

SEE ALSO

GNU C Library description – Low-Level Input/Output

TPMC551-SW-82 - Linux Device Driver Page 12 of 24

3.3 write

NAME

write() – write to a device

SYNOPSIS

#include <unistd.h>
#include <tpmc551.h>

ssize_t write
(

int filedes,
void *buffer,
size_t size

)

DESCRIPTION

The write function writes a DAC value to the specified channel.

A pointer to the callers write buffer (TP551_WRITEBUF) and the size of this structure are passed by
the parameters buffer and size to the device.

typedef struct
{

unsigned short channel; /* channel number */
unsigned short flags;
long value; /* ADC input value */

} TP551_WRITEBUF, *PTP551_WRITEBUF;

channel
This value specifies the DAC channel that will be used. Allowed values are 1 to 8 for TPMC551-
10/-20 and 1 to 4 for TPMC551-11/-21.

flags
This value is an ORed value of the flags shown in the following table.

Name Meaning
TP551_FL_CORR If this flag is set, the driver will correct the DAC output

value with the factory programmed correction data.
If this flag is not set, the output value will not be
corrected.

TP551_FL_LATCHED It this flag is set the data will be loaded into the DAC,
but the conversion will not be started, until the
TP551_FL_SIMCONV flag is set.

TPMC551-SW-82 - Linux Device Driver Page 13 of 24

TP551_FL_SIMCONV This flag starts a simultaneous conversion for all
channels. This flag is necessary to start a conversion in
latched mode.

value
This parameter specifies the DAC output value. The value must be between 0 and 65535 for
0V..+10V mode and between –32768 and +32767 for –10V..+10V mode.

EXAMPLE

#include “tpmc551.h”

int hCurrent;
ssize_t NumBytes;
TP551_WRITEBUF DACBuf;
…
/******************************’***************
Write channel 5 with corrected the input data

**/
DACBuf.channel = 5;
DACBuf.value = 0x1234;
DACBuf.flags = TP551_FL_CORR;

NumBytes = write(hCurrent, &DACBuf, sizeof(DACBuf));
if (NumBytes >= 0)
{

printf("\nWrite successful \n");
}
else
{

printf("\nWrite failed --> Error = %d\n", errno);
}
…

RETURNS

On success write returns a positive value. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

TPMC551-SW-82 - Linux Device Driver Page 14 of 24

ERRORS

Error code Description
EINVAL Invalid argument. This error code is also returned if the size of the write

buffer is too small.
EFAULT Invalid pointer to the write buffer.
EBUSY The sequencer mode is active on the specified device.
ETIME The settling or conversion exceeds the supposed range.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TPMC551-SW-82 - Linux Device Driver Page 15 of 24

3.4 ioctl

NAME

ioctl() – device control functions

SYNOPSIS

#include <sys/ioctl.h>
#include <tpmc551.h>

int ioctl
(

int filedes,
int request,
void *argp

)

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tpmc551.h:

Value Meaning
TP551_IOCGREADPARAM Get module parameters including the factory

programmed correction values, number of
channels, voltage range selection.

TP551_IOCSSTOPSEQ Stop the sequencer
TP551_IOCSSTARTSEQ Setup and start the sequencer
TP551_IOCSWRITESEQ Write DAC data into sequencer FIFO-buffer

See below for more detailed information on each control code.

To use these TPMC551 specific control codes the header file tpmc551.h must be included in
the application.

RETURNS

On success, zero is returned. In the case of an error, a value of –1 is returned. The global variable
errno contains the detailed error code.

TPMC551-SW-82 - Linux Device Driver Page 16 of 24

ERRORS

Error code Description
EINVAL Invalid argument. This error code is also returned if the requested ioctl

function is unknown. Please check the argument request.

Other function dependent error codes will be described for each ioctl code separately. Note, the
TPMC551 device driver always returns standard Linux error codes.

TPMC551-SW-82 - Linux Device Driver Page 17 of 24

3.4.1 TP551_IOCGREADPARAM

NAME

TP551_IOCGREADPARAM - Get the module parameters

DESCRIPTION

This ioctl function returns the module parameters. This includes the factory programmed correction
data, number of channels and the voltage range selection.

A pointer to the callers parameter buffer (TP551_PARABUF) is passed by the parameter argp to the
driver.

typedef struct
{

int NumChan; /* Number of Channels */
int biPol_1_4; /* Voltagemode channel 1-4 */
int biPol_5_8; /* Voltagemode channel 5-8 */
signed short OffsCorr[8]; /* Offset correction Data */
signed short GainCorr[8]; /* Gain correction Data */

} TP551_PARABUF, *PTP551_PARABUF;

NumChan
This parameter returns the number of DAC channels supported by the module.

biPol_1_4
This parameter returns TRUE, if the channels 1 to 4 are configured for –10V..+10V mode, if
FALSE is returned, the channels are configured for 0V..+10V mode.

biPol_5_8
This parameter returns TRUE, if the channels 5 to 8 are configured for –10V..+10V mode, if
FALSE is returned, the channels are configured for 0V..+10V mode.

OffsCorr
This array returns the factory programmed offset correction data set, which is used if the
TP551_FL_CORR flag is set. The index of the array specifies the channel number, 0 selects
channel 1, 1 selects channel 2 and so on.

GainCorr
This array returns the factory programmed gain correction data set, which is used if the
TP551_FL_CORR flag is set. The index of the array specifies the channel number, 0 selects
channel 1, 1 selects channel 2 and so on.

TPMC551-SW-82 - Linux Device Driver Page 18 of 24

EXAMPLE

#include <tpmc551.h>

int hCurrent;
int result;
int x;
TP551_PARABUF ParamBuf;

…

result = ioctl(hCurrent, TP551_IOCGREADPARAM, &ParamBuf);
if (result >= 0)
{

for (x = 0; ParamBuf.NumChan < 8; x++)
{

printf("Offset Error [%d] = %d \n",
x + 1,
ParamBuf.OffsCorr[x]);

printf("Gain Error [%d] = %d \n",
x + 1,
ParamBuf.GainCorr[x]);

}
}
else
{

printf("\nRead module parameter failed --> Error = %d\n",
errno);

}

…

ERRORS

Error code Description
EFAULT Invalid pointer to the parameter buffer. Please check the argument argp.

TPMC551-SW-82 - Linux Device Driver Page 19 of 24

3.4.2 TP551_IOCSSTOPSEQ

NAME

TP551_IOCSSTOPSEQ – Stop Sequencer Mode

DESCRIPTION

This ioctl function stops the sequencer mode.

The optional argument can be omitted for this ioctl function.

EXAMPLE

#include <tpmc551.h>

int hCurrent;
int result;

…

result = ioctl(hCurrent, TP551_IOCSSTOPSEQ);
if (result >= 0)
{

printf("\nStopping sequencer successful\n");
}
else
{

printf("\nStopping sequencer failed --> Error = %d\n",
errno);

}

…

ERRORS

This ioctl function returns no function specific error codes.

TPMC551-SW-82 - Linux Device Driver Page 20 of 24

3.4.3 TP551_IOCSSTARTSEQ

NAME

TP551_IOCSSTARTSEQ - Setup and start the sequencer, enter sequencer mode

DESCRIPTION

This ioctl function sets up the TPMC551 to work in sequencer mode. The cycle time and the channel
configuration are set up.

A pointer to the callers parameter buffer (TP551_STARTSEQBUF) is passed by the parameter argp to
the driver.

typedef struct
{

unsigned short channels; /* channel number */
unsigned short cycleTime; /* cycle time */
unsigned short flags; /* flags */

} TP551_STARTSEQBUF, *PTP551_STARTSEQBUF;

channels
This parameter specifies which channel will be used in sequencer mode. Setting bit 0 will
enable channel 1, setting bit 1 will enable channel 2 and so on.

cycleTime
This parameter specifies the cycle time that will be used. The value will be copied into the
sequencer timer register. The value has a resolution of 100μs steps. If the flag
TP551_FL_CONTINUOUS is set the parameter will be ignored (see below).

flags
This parameter is an ORed value of the following described flags.

Name Meaning
TP551_FL_LATCHED If this flag is set, the driver will output the data in

latched mode, the output of all channels will be
visible at the same time. Otherwise the data will
be used in transparent mode.

TP551_FL_CONTINUOUS The sequencer will work in continuous mode,
data will be written as fast as possible to the
output.

TPMC551-SW-82 - Linux Device Driver Page 21 of 24

EXAMPLE

#include <tpmc551.h>

int hCurrent;
int result;
TP551_STARTSEQBUF SeqStartBuf;

…

/***
Start sequencer with a cycle time of 1 sec
Enable following channels:

Channel 1
Channel 6

Use latched mode
**/
SeqStartBuf.cycleTime = 10000; /* 10000 * 100μs */
SeqStartBuf.channels = (1 << 0) | (1 << 5); /* Enable channel */
SeqStartBuf.flags = TP551_FL_LATCHED;
result = ioctl(hCurrent, TP551_IOCSSTARTSEQ, &SeqStartBuf);
if (result >= 0)
{

printf("\nStarting sequencer successful\n");
}
else
{

printf("\nStarting sequencer failed --> Error = %d\n",
errno);

}

…

ERRORS

Error code Description
EFAULT Invalid pointer to the parameter buffer. Please check the argument argp.

TPMC551-SW-82 - Linux Device Driver Page 22 of 24

3.4.4 TP551_IOCSWRITESEQ

NAME

TP551_IOCSWRITESEQ - Write DAC data into sequencer FIFO-buffer

DESCRIPTION

This ioctl function writes data into the sequencer FIFO. The data will be used by the interrupt function
in sequencer mode to update the DAC output values.

A pointer to the callers parameter buffer (TP551_WRITESEQBUF) is passed by the parameter argp to
the driver.

typedef struct
{

unsigned short channels; /* channel flags */
unsigned short correction; /* correction flags */
unsigned short values[8]; /* buffer */
unsigned long stat; /* write status */

} TP551_WRITESEQBUF, *PTP551_WRITESEQBUF;

channels
This parameter specifies which channel shall update output data. Setting bit 0 will update
channel 1, setting bit 1 will update channel 2 and so on. Channels which are activated and not
specified to be updated will hold their value.

correction
This parameter specifies which channels shall use the factory stored correction data. Setting bit
0 will enable data correction for channel 1, setting bit 1 will enable data correction for channel 2
and so on.

values
This array specifies the new output values. The array index specifies the channel number the
data assigned to. Index 0 for channel 1, index 1 for channel 2 and so on. The values must be
between 0 and 65535 for 0V..+10V mode and between –32768 and +32767 for –10V..+10V
mode. Only the values for channels specified for update will be used.

stat
This parameter returns the sequencer status. The status returns number of cycles which had
not been used for new data output, because there has been no output data available in the
FIFO. And the status can signal that an output error has occurred. This will happen if the
software is not able to handle a cycle before the next cycle starts. The stat argument is split in
this way:

bits 27 .. 0 number of lost cycles
bit 30 (TP550_E_ERROR) sequencer error has occurred

TPMC551-SW-82 - Linux Device Driver Page 23 of 24

EXAMPLE

#include <tpmc551.h>

int hCurrent;
int result;
TP551_WRITESEQBUF SeqWriteBuf;

…

/***
Update Sequencer data
Enable following channels:

Channel 1
Channel 6

Use correction for channel 6
**/
SeqWriteBuf.channels = (1 << 0) | (1 << 5);
SeqWriteBuf.correction = (1 << 5);
SeqWriteBuf.values[0]= 0x1234;
SeqWriteBuf.values[5]= 0x7000;
result = ioctl(hCurrent, TP551_IOCSWRITESEQ, &SeqWriteBuf);
if (result >= 0)
{

printf("\nWriting sequencer data successful\n");
}
else
{

printf("\nWriting sequencer data failed --> Error = %d\n",
errno);

}

…

ERRORS

Error code Description
EFAULT Invalid pointer to the parameter buffer. Please check the argument argp.

TPMC551-SW-82 - Linux Device Driver Page 24 of 24

4 Diagnostic
If the TPMC551 does not work properly it is helpful to get some status information from the driver
respective kernel.

The Linux /proc file system provides information about kernel, resources, driver, devices and so on.
The following screen dumps display information of a correctly running TPMC551-SW-82 device driver
(see also the proc man pages).

lspci -v
…
04:02.0 Signal processing controller: PLX Technology, Inc. PCI <-> IOBus
Bridge (rev 01)

Subsystem: TEWS Technologies GmbH Device 0227
Flags: medium devsel, IRQ 17
Memory at feb9fc00 (32-bit, non-prefetchable) [size=128]
I/O ports at e880 [size=128]
I/O ports at e800 [size=32]
Memory at feb9f800 (32-bit, non-prefetchable) [size=64]
Kernel driver in use: TEWS TECHNOLOGIES - TPMC551 8 Channel 16 Bit DAC
Kernel modules: tpmc551drv

…

cat /proc/devices
Character devices:
…
254 tpmc551drv
…

#cat /proc/iomem
00000000-0009ffff : System RAM
000a0000-000bffff : Video RAM area
000c0000-000c7fff : Video ROM
000f0000-000fffff : System ROM
00100000-03ffffff : System RAM

00100000-002327d1 : Kernel code
002327d2-0031bdcb : Kernel data

e4000000-e4ffffff : PCI device 1002:4758
e5800000-e580007f : PCI device 1011:0014

e5800000-e580007f : tulip
e6000000-e60000ff : PCI device 1000:0001
e6800000-e680003f : PCI device 10b5:9050
e7000000-e700007f : PCI device 10b5:9050
ffff0000-ffffffff : reserved

