
The Embedded I/O Company

TPMC680-SW-25
Integrity Device Driver

8 x 8 Bit Digital I/O

Version 1.0.x

User Manual
Issue 1.0.0

September 2012

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany

Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com www.tews.com

TPMC680-SW-25 – Integrity Device Driver Page 2 of 34

TPMC680-SW-25
Integrity Device Driver

8 x 8 Bit Digital I/O

Supported Modules:
TPMC680-10

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2012 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0.0 First Issue September 10, 2012

TPMC680-SW-25 – Integrity Device Driver Page 3 of 34

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Driver Installation..5
2.2 TPMC680 Applications ...5

3 API DOCUMENTATION ... 6
3.1 tpmc680Open ..6
3.2 tpmc680Close..8
3.3 tpmc680SetPortMode ...10
3.4 tpmc680ReadPort..14
3.5 tpmc680WritePort ...16
3.6 tpmc680ReadPort64..18
3.7 tpmc680WritePort64 ...20
3.8 tpmc680Receive16..22
3.9 tpmc680Send16...24
3.10tpmc680Receive32..26
3.11tpmc680Send32...28
3.12tpmc680WaitForEvent ..30

4 APPENDIX.. 32
4.1 Example Applications...32

4.1.1 tpmc680_in_8.c..32
4.1.2 tpmc680_out_8.c..32
4.1.3 tpmc680_in_16.c..32
4.1.4 tpmc680_out_16.c..32
4.1.5 tpmc680_in_32.c..33
4.1.6 tpmc680_out_32.c..33
4.1.7 tpmc680_in_64.c..33
4.1.8 tpmc680_out_64.c..33
4.1.9 tpmc680_event.c..34

TPMC680-SW-25 – Integrity Device Driver Page 4 of 34

1 Introduction
The TPMC680-SW-25 Integrity device driver software allows the operation of the supported PMC
conforming to the Integrity I/O system specification.

The driver software uses mutual exclusion to prevent simultaneous requests by multiple tasks from
interfering with each other.

The TPMC680-SW-25 device driver supports the following features:

direct reading for input ports (8 bit / 64 bit)
direct writing for output ports (8 bit / 64 bit)
buffered read for input ports (16/32 bit handshake mode)
buffered write for output ports (16/32 bit handshake mode)
configuring ports
wait for a specified input event (8 bit / 64 bit ports)

The TPMC680-SW-25 supports the modules listed below:

TPMC680-10 8 x 8 Bit Digital Inputs/Outputs (5V TTL) (PMC)

To get more information about the features and use of supported devices it is recommended to read
the manuals the supported modules listed below.

TPMC680 User Manual
TPMC680 Engineering Manual

TPMC680-SW-25 – Integrity Device Driver Page 5 of 34

2 Installation
The following files are located on the distribution media:

Directory path TPMC680-SW-25:

tpmc680.c TPMC680 device driver source
tpmc680def.h TPMC680 driver include file
tpmc680.h TPMC680 include file for driver and application
tpmc680api.c Application interface, simplifies device access
tpmc680api.h Include file for API and applications
example/*.c Path with example applications
TPMC680-SW-25-1.0.0.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

2.1 Driver Installation
Copy the TPMC680 driver files (tpmc680.c, tpmc680.h, tpmc680api.h, and tpmc680.h) into a desired
driver or project path. The driver source file tpmc680.c must be included into the kernel project and the
BSP path must be added to the include search paths of the file. (Set Options… Project Include
Directories, than double click and add a new path and select …/int680/bsp)

Afterwards the project must be rebuilt. The driver will be started automatically after booting the image
and the driver will be requested if a matching device is detected in the system.

For further information about building a kernel, please refer to MULTI and INTEGRITY Documentation.

2.2 TPMC680 Applications
Copy the TPMC680 API files (tpmc680api.c, tpmc680api.h, and tpmc680.h) into a desired application
path, and include tpmc680api.c into the application project.

The application source file must include tpmc680api.h. If these steps are done, the TPMC680 API can
be used and the devices will be accessible.

TPMC680-SW-25 – Integrity Device Driver Page 6 of 34

3 API Documentation
3.1 tpmc680Open

NAME

tpmc680Open() – open a device.

SYNOPSIS

TPMC680_HANDLE tpmc680Open
(

char *DeviceName
)

DESCRIPTION

Before I/O can be performed to a device, a file descriptor must be opened by a call to this function.

PARAMETERS

DeviceName
This parameter points to a null-terminated string that specifies the name of the device. The first
TPMC680 device is named “tpmc680_0”, the second device is named “tpmc680_1” and so on.

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;

/*
** open file descriptor to device
*/
hdl = tpmc680Open(“tpmc680_0”);
if (hdl == NULL)
{

/* handle open error */
}

TPMC680-SW-25 – Integrity Device Driver Page 7 of 34

RETURNS

A device descriptor pointer or NULL if the function fails.

TPMC680-SW-25 – Integrity Device Driver Page 8 of 34

3.2 tpmc680Close

NAME

tpmc680Close() – close a device.

SYNOPSIS

TPMC680_STATUS tpmc680Close
(

TPMC680_HANDLE hdl
)

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;
TPMC680_STATUS result;

/*
** close the device
*/
result = tpmc680Close(hdl);
if (result != TPMC680_OK)
{

/* handle close error */
}

TPMC680-SW-25 – Integrity Device Driver Page 9 of 34

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC680-SW-25 – Integrity Device Driver Page 10 of 34

3.3 tpmc680SetPortMode

NAME

tpmc680SetPortMode – Configure port

SYNOPSIS

TPMC680_STATUS tpmc680SetPortMode
(

TPMC680_HANDLE hdl,
unsigned int portNo,
unsigned int portSize,
unsigned int portDirection,
unsigned int handshakeMode,
unsigned int handshakeFifoLevelMode

)

DESCRIPTION

This function configures the specified port of the TPMC680. The function sets size, direction and
handshake modes. If port sizes greater 8 bit are used some (hardware) ports will be concatenated to a
(software) port which is responsible to control the I/O function. Mainly responsible for port
concatenations are port 0 and 2. Port 0 can be used for 16 and 32 bit handshake and 64 bit
synchronous I/O. Port 2 can be used for 16 bit handshake I/O.

The table below shows to which port number the (hardware) ports will be assigned at the possible
configurations of ports 0 and 2.

(Hardware)
Port 7 6 5 4 3 2 1 0

7
(8 bit)

6
(8 bit)

5
(8 bit)

4
(8 bit)

3
(8 bit)

2
(8 bit)

1
(8 bit)

0
(8 bit)

7
(8 bit)

6
(8 bit)

5
(8 bit)

4
(8 bit)

3
(8 bit)

2
(8 bit)

0
(16 bit / HS)

7
(8 bit)

6
(8 bit)

5
(8 bit)

4
(8 bit)

2
(16 bit / HS)

1
(8 bit)

0
(8 bit)

7
(8 bit)

6
(8 bit)

5
(8 bit)

4
(8 bit)

2
(16 bit / HS)

0
(16 bit / HS)

7
(8 bit)

6
(8 bit)

5
(8 bit)

4
(8 bit)

0
(32 bit / HS)

(Software)
Port number

0
(64 bit / synchronous)

TPMC680-SW-25 – Integrity Device Driver Page 11 of 34

Additionally to the port concatenations the direction of port 4 and port 5 may be changed if port 0 or
port 2 is used in handshake mode. Port 4 will be configured as input port and port 5 may be configured
for output. Bit 0 and 1 will be reserved for the handshake signals and are not anymore controlled by
the ports.

Please also refer to the TPMC680 User Manual to get more information about the port
configuration and use signals.

Changing a port size from a bigger to a smaller size will also change the mode of the
connected ports. The ports will be set to 8 bit mode and they will keep the configured direction.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port that shall be configured. Valid values are between 0 and 7.

portSize
This argument specifies the size of the port. The following table describes the allowed port sizes
and for which ports they are allowed.
Value Ports Description
TPMC680_MODE_SIZE_8BIT 0, 1, 2, 3,

4, 5, 6, 7
The port has a width of 8 bit. Each port can
be accessed separately.

TPMC680_MODE_SIZE_16BIT 0,2 The port has a width of 16 bit and the
output is controlled by the handshake
signals. Two ports are used together. If
port 0 is selected port 1 is used also. If port
2 is selected also port 3 will be used. The
configuration of the connected ports is
always adapted.
If this mode is selected for any port the
handshake port 4 will be configured as
an 8-bit input port.

TPMC680_MODE_SIZE_32BIT 0 The port has a width of 32 bit and the
output is controlled by the handshake
signals. The ports 0, 1, 2 and 3 will be
used together. The configuration of the
connected ports is always set together.
If this mode is selected the handshake
port 4 will be configured as an 8-bit
input port.

TPMC680_MODE_SIZE_64BIT 0 All ports are connected and can be used
as simple 64 bit input or output port. All
ports get the same configuration.

TPMC680-SW-25 – Integrity Device Driver Page 12 of 34

portDirection
This argument specifies the direction of the port. All connected ports will be set to the same
direction. Allowed values are:
Value Description
TPMC680_MODE_DIR_INPUT The port will be used as an input port.
TPMC680_MODE_DIR_OUTPUT The port will be used as an output port.

handshakeMode
This argument specifies the handshake mode and is only valid if the port is configured for 16 or
32 bit mode (TPMC680_MODE_SIZE_16BIT, TPMC680_MODE_SIZE_32BIT). Using an output
handshake, will change the direction of port 5 to output. The allowed values are:
Value Description
TPMC680_MODE_HSFLAG_NO No output handshake will be used.
TPMC680_MODE_HSFLAG_INTERLOCKED The interlocked output handshake mode

will be used.
TPMC680_MODE_HSFLAG_PULSED The pulsed output handshake mode will be

used.

handshakeFifoLevelMode
This argument specifies the handshake event depending on the handshake FIFO fill level. This
value is only used if an output handshake is configured. Allowed values are:
Value Description
TPMC680_MODE_HSFIFOEV_NOTFULL The event announces FIFO is not full.
TPMC680_MODE_HSFIFOEV_EMPTY The event announces FIFO is empty.

TPMC680-SW-25 – Integrity Device Driver Page 13 of 34

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;
TPMC680_STATUS result;

/*
** Configure port (2)
** Size: 16-bit
** Direction: output
** handshake: interlocked / output event on empty FIFO
*/
result = tpmc680SetPortMode (hdl,

2,
TPMC680_MODE_SIZE_16BIT,
TPMC680_MODE_DIR_OUTPUT,
TPMC680_MODE_HSFLAG_INTERLOCKED,
TPMC680_MODE_HSFIFOEV_EMPTY);

if (result != TPMC680_OK)
{

/* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL An argument contains an invalid value.
TPMC680_ERR_CHRNG An invalid port number has been specified.
TPMC680_ERR_ACCESS The specified port configuration is not allowed.

TPMC680-SW-25 – Integrity Device Driver Page 14 of 34

3.4 tpmc680ReadPort

NAME

tpmc680ReadPort – Read state of 8-bit port

SYNOPSIS

TPMC680_STATUS tpmc680ReadPort
(

TPMC680_HANDLE hdl,
unsigned int portNo,
unsigned char *pPortVal

)

DESCRIPTION

This function reads the current state of the input lines of an 8 bit port on the TPMC680.

The port must be configured in 8 bit mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port that shall be read. Valid values are between 0 and 7.

pPortVal
This pointer points to an unsigned char where the current state of the port will be stored to.

TPMC680-SW-25 – Integrity Device Driver Page 15 of 34

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;
TPMC680_STATUS result;
unsigned char portState;

/*
** Read from 8-bit port (2)
*/
result = tpmc680ReadPort (hdl,

2,
&portState);

if (result == TPMC680_OK)
{

printf(“Port2: 0x%02X\n”, portState);
}
else
{

/* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL A specified pointer is NULL.
TPMC680_ERR_CHRNG An invalid port number has been specified.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

TPMC680-SW-25 – Integrity Device Driver Page 16 of 34

3.5 tpmc680WritePort

NAME

tpmc680WritePort – Write new output value to 8-bit port

SYNOPSIS

TPMC680_STATUS tpmc680WritePort
(

TPMC680_HANDLE hdl,
unsigned int portNo,
unsigned char portVal

)

DESCRIPTION

This function writes a new output value to an 8 bit port of the TPMC680.

The port must be configured in 8 bit output mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port that shall be read. Valid values are between 0 and 7.

portVal
This argument specifies the new output value.

TPMC680-SW-25 – Integrity Device Driver Page 17 of 34

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;
TPMC680_STATUS result;

/*
** Set 8-bit port (2) (new value 12(hex))
*/
result = tpmc680WritePort (hdl,

2,
0x12);

if (result != TPMC680_OK)
{

/* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_CHRNG An invalid port number has been specified.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

TPMC680-SW-25 – Integrity Device Driver Page 18 of 34

3.6 tpmc680ReadPort64

NAME

tpmc680ReadPort64 – Read state of 64-bit port

SYNOPSIS

TPMC680_STATUS tpmc680ReadPort64
(

TPMC680_HANDLE hdl,
unsigned int *pPortVal0_31,
unsigned int *pPortVal32_63

)

DESCRIPTION

This function reads the current state of the input lines of the 64 bit port on the TPMC680.

The port must be configured in 64 bit mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pPortVal0_31
This pointer points to an unsigned int (32-bit) where the current state of the ports 0...3 will be
stored. Port 0 will be stored to bits 0...7, Port 1 to bits 8…15, and so on.

pPortVal32_63
This pointer points to an unsigned int (32-bit) where the current state of the ports 4...7 will be
stored. Port 4 will be stored to bits 0...7, Port 5 to bits 8…15, and so on.

TPMC680-SW-25 – Integrity Device Driver Page 19 of 34

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;
TPMC680_STATUS result;
unsigned int portStateLow;
unsigned int portStateHigh;

/*
** Read from 64-bit port
*/
result = tpmc680ReadPort64(hdl,

&portStateLow,
&portStateHigh);

if (result == TPMC680_OK)
{

printf(“Port7..0: 0x%08X%08X\n”, portStateHigh, portStateLow);
}
else
{

/* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL A specified pointer is NULL.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

TPMC680-SW-25 – Integrity Device Driver Page 20 of 34

3.7 tpmc680WritePort64

NAME

tpmc680WritePort64 – Write new output value to 64-bit port

SYNOPSIS

TPMC680_STATUS tpmc680WritePort64
(

TPMC680_HANDLE hdl,
unsigned int portVal0_31,
unsigned int portVal32_63

)

DESCRIPTION

This function writes a new output value to the 64 bit port of the TPMC680.

The port must be configured in 64 bit output mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portVal0_31
This argument specifies the new output value of the ports 0...3. Port 0 corresponds to bits 0...7,
Port 1 to bits 8…15, and so on.

portVal32_63
This argument specifies the new output value of the ports 4...7. Port 4 corresponds to bits 0...7,
Port 5 to bits 8…15, and so on.

TPMC680-SW-25 – Integrity Device Driver Page 21 of 34

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;
TPMC680_STATUS result;

/*
** Set 64-bit port (new value 7766554433221100(hex))
*/
result = tpmc680WritePort64 (hdl,

0x33221100,
0x77665544);

if (result != TPMC680_OK)
{

/* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

TPMC680-SW-25 – Integrity Device Driver Page 22 of 34

3.8 tpmc680Receive16

NAME

tpmc680Receive16 – Read data received on 16-bit port

SYNOPSIS

TPMC680_STATUS tpmc680Receive16
(

TPMC680_HANDLE hdl,
unsigned int portNo,
unsigned int bufSize,
unsigned short *pBuf,
unsigned int *pValidData

)

DESCRIPTION

This function reads data that has been received on a 16 bit input port of the TPMC680.

The port must be configured in 16 bit input mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port that shall be read. Valid values are 0 and 2.

bufSize
This argument specifies the number data words (16 bit) which can be copied into the input
buffer.

pBuf
This pointer points to the input buffer where the received data will be stored.

pValidData
This pointer points to an unsigned int value where the number of received (valid) data values
will be stored.

TPMC680-SW-25 – Integrity Device Driver Page 23 of 34

EXAMPLE

#include “tpmc680api.h”

#define BUFSIZE 5

TPMC680_HANDLE hdl;
TPMC680_STATUS result;
unsigned short inBuf[BUFSIZE];
unsigned int numData;

/*
** Read received data from 16-bit port (2)
*/
result = tpmc680Receive16 (hdl,

2,
BUFSIZE,
inBuf,
&numData);

if (result == TPMC680_OK)
{

for (i = 0; i < numData; i++)
printf(“[%d] 0x%04X\n”, i, inBuf[i]);

}
else
{

/* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL A specified pointer is NULL.
TPMC680_ERR_CHRNG An invalid port number has been specified.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

TPMC680-SW-25 – Integrity Device Driver Page 24 of 34

3.9 tpmc680Send16

NAME

tpmc680Send16 – Send data on 16-bit port

SYNOPSIS

TPMC680_STATUS tpmc680Send16
(

TPMC680_HANDLE hdl,
unsigned int portNo,
unsigned int bufSize,
unsigned short *pBuf,
unsigned int *pSentData

)

DESCRIPTION

This function sends data on a 16 bit port of the TPMC680. The function transfers the data into a FIFO
and starts transmission. It will not wait until data is sent.

The port must be configured in 16 bit output mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port that shall be used. Valid values are 0 and 2.

bufSize
This argument specifies the number data words (16 bit) in the output buffer.

pBuf
This pointer points to the output buffer containing the data ready to send.

pSentData
This pointer points to an unsigned int value where the number of successfully transferred data
values will be stored.

TPMC680-SW-25 – Integrity Device Driver Page 25 of 34

EXAMPLE

#include “tpmc680api.h”

#define BUFSIZE 5

TPMC680_HANDLE hdl;
TPMC680_STATUS result;
unsigned short outBuf[BUFSIZE] = {0x1111,0x2222,0x3333,0x4444,0x5555};
unsigned int numData;

/*
** Read received data from 16-bit port (2)
*/
result = tpmc680Send16 (hdl,

2,
BUFSIZE,
outBuf,
&numData);

if (result != TPMC680_OK)
{

/* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL A specified pointer is NULL.
TPMC680_ERR_CHRNG An invalid port number has been specified.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

TPMC680-SW-25 – Integrity Device Driver Page 26 of 34

3.10tpmc680Receive32

NAME

tpmc680Receive32 – Read data received on 32-bit port

SYNOPSIS

TPMC680_STATUS tpmc680Receive32
(

TPMC680_HANDLE hdl,
unsigned int bufSize,
unsigned int *pBuf,
unsigned int *pValidData

)

DESCRIPTION

This function reads data that has been received on the 32 bit input port of the TPMC680.

The port must be configured in 32 bit input mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

bufSize
This argument specifies the number data words (32 bit) which can be copied into the input
buffer.

pBuf
This pointer points to the input buffer where the received data will be stored.

pValidData
This pointer points to an unsigned int value where the number of received (valid) data values
will be stored.

TPMC680-SW-25 – Integrity Device Driver Page 27 of 34

EXAMPLE

#include “tpmc680api.h”

#define BUFSIZE 5

TPMC680_HANDLE hdl;
TPMC680_STATUS result;
unsigned int inBuf[BUFSIZE];
unsigned int numData;

/*
** Read received data from 32-bit port (2)
*/
result = tpmc680Receive32 (hdl,

BUFSIZE,
inBuf,
&numData);

if (result == TPMC680_OK)
{

for (i = 0; i < numData; i++)
printf(“[%d] 0x%08X\n”, i, inBuf[i]);

}
else
{

/* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL A specified pointer is NULL.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

TPMC680-SW-25 – Integrity Device Driver Page 28 of 34

3.11tpmc680Send32

NAME

tpmc680Send32 – Send data on 32-bit port

SYNOPSIS

TPMC680_STATUS tpmc680Send32
(

TPMC680_HANDLE hdl,
unsigned int bufSize,
unsigned int *pBuf,
unsigned int *pSentData

)

DESCRIPTION

This function sends data on the 32 bit port of the TPMC680. The function transfers the data into a
FIFO and starts transmission. It will not wait until data is sent.

The port must be configured in 32 bit output mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

bufSize
This argument specifies the number data words (32 bit) in the output buffer.

pBuf
This pointer points to the output buffer containing the data ready to send.

pSentData
This pointer points to an unsigned int value where the number of successfully transferred data
values will be stored.

TPMC680-SW-25 – Integrity Device Driver Page 29 of 34

EXAMPLE

#include “tpmc680api.h”

#define BUFSIZE 3

TPMC680_HANDLE hdl;
TPMC680_STATUS result;
unsigned int outBuf[BUFSIZE] = {0x11112222,0x33334444,0x55556666};
unsigned int numData;

/*
** Send data on 32-bit port
*/
result = tpmc680Send32 (hdl,

BUFSIZE,
outBuf,
&numData);

if (result != TPMC680_OK)
{

/* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL A specified pointer is NULL.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

TPMC680-SW-25 – Integrity Device Driver Page 30 of 34

3.12tpmc680WaitForEvent

NAME

tpmc680WaitForEvent – Wait for a specified input event

SYNOPSIS

TPMC680_STATUS tpmc680WaitForEvent
(

TPMC680_HANDLE hdl,
unsigned int portNo,
unsigned int lineNo,
unsigned int transition,
unsigned int timeout

)

DESCRIPTION

This function waits for a specified event on a specified input line of the TPMC680.

The port must be configured in 8 bit or 64 bit input mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port. Valid values are between 0 and 7.

lineNo
This argument specifies the port’s line number. Valid values are between 0 and 7.

transition
This argument specifies the transition event to wait for. The following events are supported:
Value Description
TPMC680_IO_EDGE_HI The event will occur if the specified input line changes from

Low to High.
TPMC680_IO_EDGE_LO The event will occur if the specified input line changes from

High to Low.
TPMC680_IO_EDGE_ANY The event will occur if the specified input line changes its

value.

TPMC680-SW-25 – Integrity Device Driver Page 31 of 34

timeout
This argument specifies the timeout in milliseconds. If the specified event does not occur within
the specified time, the function will return with an error code. The timeout granularity is in
seconds.

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;
TPMC680_STATUS result;

/*
** Wait for a high to low transition on line 5 of port 6
** Timeout after 10000 milliseconds
*/
result = tpmc680WaitForEvent (hdl,

6,
5,
TPMC680_IO_EDGE_LO,
10000);

if (result != TPMC680_OK)
{

/* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL A specified argument contains an invalid value.
TPMC680_ERR_CHRNG An invalid port number has been specified.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.
TPMC680_ERR_BUSY There is already an active job waiting for an event

on the specified input line.
TPMC680_ERR_TIMEOUT The function timed out

TPMC680-SW-25 – Integrity Device Driver Page 32 of 34

4 Appendix
4.1 Example Applications

The example application shall give an overview about the use of the TPMC680 devices and how to
use the TPMC680 API.

4.1.1 tpmc680_in_8.c
This simple example configures the ports for 8-bit input and executes reads for all input ports on all
installed TPMC680 boards.

Program flow:
open devices
configure all ports for 8-bit input
periodically execute read on all ports
close devices

4.1.2 tpmc680_out_8.c
This simple example configures the ports for 8-bit output and executes writes for all output ports on all
installed TPMC680 boards.

Program flow:
open devices
configure all ports for 8-bit output
periodically write values to all ports
close devices

4.1.3 tpmc680_in_16.c
This simple example configures the port 0 and 2 for 16-bit input and receives data on the 16-bit input
ports.

Program flow:
open devices
configure ports 0 and 2 for 16-bit input
periodically execute receive on all ports
close devices

4.1.4 tpmc680_out_16.c
This simple example configures the port 0 and 2 for 16-bit output and receives data on the 16-bit
output ports.

Program flow:
open devices
configure ports 0 and 2 for 16-bit output
periodically execute transmits data on ports
close devices

TPMC680-SW-25 – Integrity Device Driver Page 33 of 34

4.1.5 tpmc680_in_32.c
This simple example configures the port 0 for 32-bit input and receives data on the 32-bit input ports.

Program flow:
open devices
configure port 0 for 32-bit input
periodically execute receive on all ports
close devices

4.1.6 tpmc680_out_32.c
This simple example configures the port 0 for 32-bit output and transmits data on the 32-bit output
ports.

Program flow:
open devices
configure port 0 for 32-bit output
periodically transmits data on 32-bit port
close devices

4.1.7 tpmc680_in_64.c
This simple example configures the TPMC680 for 64-bit input and executes reads for the 64-bit port
on all installed TPMC680 boards.

Program flow:
open devices
configure TPMC680 for 64-bit input
periodically execute read on 64-bit port
close devices

4.1.8 tpmc680_out_64.c
This simple example configures the TPMC680 for 64-bit output and executes writes for the 64-bit port
on all installed TPMC680 boards.

Program flow:
open devices
configure TPMC680 for 64-bit output
periodically write new data on 64-bit port
close devices

TPMC680-SW-25 – Integrity Device Driver Page 34 of 34

4.1.9 tpmc680_event.c
This simple example configures the TPMC680 for 64-bit input and executes some event wait
functions.

Program flow:
open devices
configure TPMC680 for 64-bit input
wait for event (high transition) on port 0 line 0
wait for event (low transition) on port 1 line 1
wait for event (any transition) on port 7 line 7
close devices

