
The Embedded I/O Company

TPMC680-SW-42
VxWorks Device Driver

8 x 8 Bit Digital I/O

Version 5.0.x

User Manual
Issue 5.0.0

December 2017

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany

Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com www.tews.com

TPMC680-SW-42 – VxWorks Device Driver Page 2 of 32

TPMC680-SW-42
VxWorks Device Driver

8 x 8 Bit Digital I/O

Supported Modules:
TPMC680-10

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2002-2017 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0 First Issue November 16, 2002
1.1 Read() parameter description changed December 11, 2002
1.2 Flags “empty / not full” corrected December 13, 2002

2.0.0 New driver start and device creation functions, new file list May 24, 2006
3.0.0 Support for VxBus and API description added, general revision

read() and write() functions replaced by ioctl() functions
February 3, 2010

3.0.1 Legacy vs. VxBus Driver modified March 26, 2010
4.0.0 New API, Manual and Driver revised June 29, 2012
5.0.0 VxWorks 7 support added, new installation guide December 8, 2017

TPMC680-SW-42 – VxWorks Device Driver Page 3 of 32

Table of Contents
1 INTRODUCTION ... 4
2 API DOCUMENTATION ... 5

General Functions... 52.1
2.1.1 tpmc680Open ... 5
2.1.2 tpmc680Close ... 7
Device Access Functions ... 92.2
2.2.1 tpmc680SetPortMode ... 9
2.2.2 tpmc680ReadPort ... 13
2.2.3 tpmc680WritePort ... 15
2.2.4 tpmc680ReadPort64 ... 17
2.2.5 tpmc680WritePort64 ... 19
2.2.6 tpmc680Receive16 ... 21
2.2.7 tpmc680Send16 .. 23
2.2.8 tpmc680Receive32 ... 25
2.2.9 tpmc680Send32 .. 27
2.2.10 tpmc680WaitForEvent .. 29

3 DRIVER CONFIGURATION ... 31
Configuration of FIFO Depth .. 313.1

4 DEBUGGING AND DIAGNOSTIC .. 32

TPMC680-SW-42 – VxWorks Device Driver Page 4 of 32

1 Introduction
The TPMC680-SW-42 VxWorks device driver software allows the operation of the supported PMCs
conforming to the VxWorks I/O system specification.

The TPMC680-SW-42 release contains independent driver sources for the old legacy (pre-VxBus) and
the new VxBus-enabled (GEN1 and GEN2) driver model. The VxBus-enabled driver is recommended
for new developments with later VxWorks 6.x and 7.x releases and mandatory for VxWorks 64-bit and
SMP systems.

Both drivers, legacy and VxBus, share the same application programming interface (API).

The TPMC680-SW-42 device driver supports the following features:

 direct reading for input ports (8 bit / synchronous mode)
 direct writing for output ports (8 bit / synchronous mode)
 buffered read for input ports (16/32 bit handshake mode)
 buffered write for output ports (16/32 bit handshake mode)
 configuring ports
 wait for a specified input event (8 bit / 64 bit ports)

The TPMC680-SW-82 device driver supports the modules listed below:

TPMC680-10 8 x 8 Bit Digital Inputs/Outputs (5V TTL) (PMC)

To get more information about the features and use of TPMC680 devices it is recommended to read
the manuals listed below.

TPMC680 User Manual
TEWS TECHNOLOGIES VxWorks Device Drivers - Installation Guide

TPMC680-SW-42 – VxWorks Device Driver Page 5 of 32

2 API Documentation
 General Functions 2.1

2.1.1 tpmc680Open

NAME

tpmc680Open – opens a device.

SYNOPSIS

TPMC680_HANDLE tpmc680Open
(

char *DeviceName
)

DESCRIPTION

Before I/O can be performed to a device, a device descriptor must be opened by a call to this function.

PARAMETERS

DeviceName
This parameter points to a null-terminated string that specifies the name of the device. The first
TPMC680 device is named “/tpmc680/0”, the second device is named “/tpmc680/1” and so on.

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;

/*
** open the specified device
*/
hdl = tpmc680Open(“/tpmc680/0”);
if (hdl == NULL)
{
 /* handle open error */
}

TPMC680-SW-42 – VxWorks Device Driver Page 6 of 32

RETURNS

A device handle, or NULL if the function fails

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TPMC680-SW-42 – VxWorks Device Driver Page 7 of 32

2.1.2 tpmc680Close

NAME

tpmc680Close – Closes a device.

SYNOPSIS

TPMC680_STATUS tpmc680Close
(

TPMC680_HANDLE hdl
)

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hdl
This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;
TPMC680_STATUS result;

/*
** close the device
*/
result = tpmc680Close(hdl);
if (result != TPMC680_OK)
{
 /* handle close error */
}

TPMC680-SW-42 – VxWorks Device Driver Page 8 of 32

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC680-SW-42 – VxWorks Device Driver Page 9 of 32

 Device Access Functions 2.2

2.2.1 tpmc680SetPortMode

NAME

tpmc680SetPortMode – Configure port

SYNOPSIS

TPMC680_STATUS tpmc680SetPortMode
(

TPMC680_HANDLE hdl,
unsigned int portNo,
unsigned int portSize,
unsigned int portDirection,
unsigned int handshakeMode,
unsigned int handshakeFifoLevelMode

)

DESCRIPTION

This function configures the specified port of the TPMC680. The function sets size, direction and
handshake modes. If port sizes greater than 8 bit is used some (hardware) ports will be concatenated
to a (software) port which is responsible to control the I/O function. Mainly responsible for port
concatenations are port 0 and 2. Port 0 can be used for 16 and 32 bit handshake and 64 bit
synchronous I/O. Port 2 can be used for 16 bit handshake I/O.

TPMC680-SW-42 – VxWorks Device Driver Page 10 of 32

The table below shows to which port number the (hardware) ports will be assigned at the possible
configurations of ports 0 and 2.

(Hardware)
Port 7 6 5 4 3 2 1 0

(Software)
Port number

7
(8 bit)

6
(8 bit)

5
(8 bit)

4
(8 bit)

3
(8 bit)

2
(8 bit)

1
(8 bit)

0
(8 bit)

7
(8 bit)

6
(8 bit)

5
(8 bit)

4
(8 bit)

3
(8 bit)

2
(8 bit)

0
(16 bit / HS)

7
(8 bit)

6
(8 bit)

5
(8 bit)

4
(8 bit)

2
(16 bit / HS)

1
(8 bit)

0
(8 bit)

7
(8 bit)

6
(8 bit)

5
(8 bit)

4
(8 bit)

2
(16 bit / HS)

0
(16 bit / HS)

7
(8 bit)

6
(8 bit)

5
(8 bit)

4
(8 bit)

0
(32 bit / HS)

0
(64 bit / synchronous)

Additionally to the port concatenations the direction of port 4 and port 5 may be changed if port 0 or
port 2 is used in handshake mode. Port 4 will be configured as input port and port 5 may be configured
for output. Bit 0 and 1 will be reserved for the handshake signals and are not anymore controlled by
the ports.

Please also refer to the TPMC680 User Manual to get more information about the port
configuration and used signals.

Changing a port size from a bigger to a smaller size will also change the mode of the
connected ports. The ports will be set to 8 bit mode and they will keep the configured direction.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port that shall be configured. Valid values are between 0 and 7.

TPMC680-SW-42 – VxWorks Device Driver Page 11 of 32

portSize
This argument specifies the size of the port. The following table describes the allowed port sizes
and for which ports they are allowed.

Value Ports Description
TPMC680_MODE_SIZE_8BIT 0, 1, 2, 3,

4, 5, 6, 7
The port has a width of 8 bit. Each port can
be accessed separately.

TPMC680_MODE_SIZE_16BIT 0,2 The port has a width of 16 bit and the
output is controlled by the handshake
signals. Two ports are used together. If
port 0 is selected port 1 is used also. If port
2 is selected also port 3 will be used. The
configuration of the connected ports is
always adapted.
If this mode is selected for any port the
handshake port 4 will be configured as
an 8-bit input port.

TPMC680_MODE_SIZE_32BIT 0 The port has a width of 32 bit and the
output is controlled by the handshake
signals. The ports 0, 1, 2 and 3 will be
used together. The configuration of the
connected ports is always set together.
If this mode is selected the handshake
port 4 will be configured as an 8-bit
input port.

TPMC680_MODE_SIZE_64BIT 0 All ports are connected and can be used
as simple 64 bit input or output port. All
ports get the same configuration.

portDirection
This argument specifies the direction of the port. All connected ports will be set to the same
direction. Allowed values are:

Value Description
TPMC680_MODE_DIR_INPUT The port will be used as an input port.
TPMC680_MODE_DIR_OUTPUT The port will be used as an output port.

handshakeMode
This argument specifies the handshake mode and is only valid if the port is configured for 16 or
32 bit mode (TPMC680_MODE_SIZE_16BIT, TPMC680_MODE_SIZE_32BIT). Using an output
handshake, will change the direction of port 5 to output. The allowed values are:

Value Description
TPMC680_MODE_HSFLAG_NO No output handshake will be used.
TPMC680_MODE_HSFLAG_INTERLOCKED The interlocked handshake mode will be

used.
TPMC680_MODE_HSFLAG_PULSED The pulsed handshake mode will be used.

TPMC680-SW-42 – VxWorks Device Driver Page 12 of 32

handshakeFifoLevelMode
This argument specifies the handshake event depending on the handshake FIFO fill level. This
value is only used if a handshake mode is configured. Allowed values are:

Value Description
TPMC680_MODE_HSFIFOEV_NOTFULL The event announces FIFO is not full.
TPMC680_MODE_HSFIFOEV_EMPTY The event announces FIFO is empty.

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;
TPMC680_STATUS result;

/*
** Configure port (2)
** Size: 16-bit, Direction: output
** handshake: interlocked / output event on empty FIFO
*/
result = tpmc680SetPortMode (hdl,
 2,
 TPMC680_MODE_SIZE_16BIT,
 TPMC680_MODE_DIR_OUTPUT,
 TPMC680_MODE_HSFLAG_INTERLOCKED,
 TPMC680_MODE_HSFIFOEV_EMPTY);
if (result != TPMC680_OK)
{
 /* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL An argument contains an invalid value.
TPMC680_ERR_CHRNG An invalid port number has been specified.
TPMC680_ERR_ACCESS The specified port configuration is not allowed.

Other returned error codes are system error conditions.

TPMC680-SW-42 – VxWorks Device Driver Page 13 of 32

2.2.2 tpmc680ReadPort

NAME

tpmc680ReadPort – Read state of 8-bit port

SYNOPSIS

TPMC680_STATUS tpmc680ReadPort
(

TPMC680_HANDLE hdl,
unsigned int portNo,
unsigned char *pPortVal

)

DESCRIPTION

This function reads the current state of the input lines of an 8 bit port on the TPMC680.

The port must be configured in 8 bit mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port that shall be read. Valid values are between 0 and 7.

pPortVal
This pointer points to an unsigned char where the current state of the port will be stored.

TPMC680-SW-42 – VxWorks Device Driver Page 14 of 32

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;
TPMC680_STATUS result;
unsigned char portState;

/*
** Read from 8-bit port (2)
*/
result = tpmc680ReadPort (hdl,
 2,
 &portState);
if (result == TPMC680_OK)
{
 printf(“Port2: 0x%02X\n”, portState);
}
else
{
 /* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL A specified pointer is NULL.
TPMC680_ERR_CHRNG An invalid port number has been specified.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

Other returned error codes are system error conditions.

TPMC680-SW-42 – VxWorks Device Driver Page 15 of 32

2.2.3 tpmc680WritePort

NAME

tpmc680WritePort – Write new output value to 8-bit port

SYNOPSIS

TPMC680_STATUS tpmc680WritePort
(

TPMC680_HANDLE hdl,
unsigned int portNo,
unsigned char portVal

)

DESCRIPTION

This function writes a new output value to an 8 bit port of the TPMC680.

The port must be configured in 8 bit output mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port that shall be written. Valid values are between 0 and 7.

portVal
This argument specifies the new output value.

TPMC680-SW-42 – VxWorks Device Driver Page 16 of 32

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;
TPMC680_STATUS result;

/*
** Set 8-bit port (2) (new value 12(hex))
*/
result = tpmc680WritePort (hdl,
 2,
 0x12);
if (result != TPMC680_OK)
{
 /* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_CHRNG An invalid port number has been specified.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

Other returned error codes are system error conditions.

TPMC680-SW-42 – VxWorks Device Driver Page 17 of 32

2.2.4 tpmc680ReadPort64

NAME

tpmc680ReadPort64 – Read state of 64-bit port

SYNOPSIS

TPMC680_STATUS tpmc680ReadPort64
(

TPMC680_HANDLE hdl,
unsigned int *pPortVal0_31,
unsigned int *pPortVal32_63

)

DESCRIPTION

This function reads the current state of the input lines of the 64 bit port on the TPMC680.

The port must be configured in 64 bit mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pPortVal0_31
This pointer points to an unsigned int (32-bit) where the current state of the ports 0...3 will be
stored. Port 0 will be stored to bits 0...7, Port 1 to bits 8…15, and so on.

pPortVal32_63
This pointer points to an unsigned int (32-bit) where the current state of the ports 4...7 will be
stored. Port 4 will be stored to bits 0...7, Port 5 to bits 8…15, and so on.

TPMC680-SW-42 – VxWorks Device Driver Page 18 of 32

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;
TPMC680_STATUS result;
unsigned int portStateLow;
unsigned int portStateHigh;

/*
** Read from 64-bit port
*/
result = tpmc680ReadPort64(hdl,
 &portStateLow,
 &portStateHigh);
if (result == TPMC680_OK)
{
 printf(“Port7..0: 0x%08X%08X\n”, portStateHigh, portStateLow);
}
else
{
 /* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL A specified pointer is NULL.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

Other returned error codes are system error conditions.

TPMC680-SW-42 – VxWorks Device Driver Page 19 of 32

2.2.5 tpmc680WritePort64

NAME

tpmc680WritePort64 – Write new output value to 64-bit port

SYNOPSIS

TPMC680_STATUS tpmc680WritePort64
(

TPMC680_HANDLE hdl,
unsigned int portVal0_31,
unsigned int portVal32_63

)

DESCRIPTION

This function writes a new output value to the 64 bit port of the TPMC680.

The port must be configured in 64 bit output mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portVal0_31
This argument specifies the new output value of the ports 0...3. Port 0 is stored in bits 0...7, Port
1 in bits 8…15, and so on.

portVal32_63
This argument specifies the new output value of the ports 4...7. Port 4 is stored in bits 0...7, Port
5 in bits 8…15, and so on.

TPMC680-SW-42 – VxWorks Device Driver Page 20 of 32

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;
TPMC680_STATUS result;

/*
** Set 64-bit port (new value 7766554433221100(hex))
*/
result = tpmc680WritePort64 (hdl,
 0x33221100,
 0x77665544);
if (result != TPMC680_OK)
{
 /* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

Other returned error codes are system error conditions.

TPMC680-SW-42 – VxWorks Device Driver Page 21 of 32

2.2.6 tpmc680Receive16

NAME

tpmc680Receive16 – Read data received on 16-bit port

SYNOPSIS

TPMC680_STATUS tpmc680Receive16
(

TPMC680_HANDLE hdl,
unsigned int portNo,
unsigned int bufSize,
unsigned short *pBuf,
unsigned int *pValidData

)

DESCRIPTION

This function reads data that has been received on a 16 bit input port of the TPMC680.

The port must be configured in 16 bit input mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port that shall be read. Valid values are 0 and 2.

bufSize
This argument specifies the number of data words (16 bit) which can be copied into the input
buffer.

pBuf
This pointer points to the input buffer where the received data will be stored.

pValidData
This pointer points to an unsigned int value where the number of received (valid) data values
will be stored.

TPMC680-SW-42 – VxWorks Device Driver Page 22 of 32

EXAMPLE

#include “tpmc680api.h”

#define BUFSIZE 5

TPMC680_HANDLE hdl;
TPMC680_STATUS result;
unsigned short inBuf[BUFSIZE];
unsigned int numData;

/*
** Read received data from 16-bit port (2)
*/
result = tpmc680Receive16 (hdl,
 2,
 BUFSIZE,
 inBuf,
 &numData);
if (result == TPMC680_OK)
{
 for (i = 0; i < numData; i++)
 printf(“[%d] 0x%04X\n”, i, inBuf[i]);
}
else
{
 /* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL A specified pointer is NULL.
TPMC680_ERR_CHRNG An invalid port number has been specified.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

Other returned error codes are system error conditions.

TPMC680-SW-42 – VxWorks Device Driver Page 23 of 32

2.2.7 tpmc680Send16

NAME

tpmc680Send16 – Send data on 16-bit port

SYNOPSIS

TPMC680_STATUS tpmc680Send16
(

TPMC680_HANDLE hdl,
unsigned int portNo,
unsigned int bufSize,
unsigned short *pBuf,
unsigned int *pSentData

)

DESCRIPTION

This function sends data on a 16 bit port of the TPMC680. The function places the data into a FIFO
and starts transmission. It will not wait until data is physically transmitted.

The port must be configured in 16 bit output mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port that shall be used. Valid values are 0 and 2.

bufSize
This argument specifies the number of data words (16 bit) in the output buffer.

pBuf
This pointer points to the output buffer containing the data ready to send.

pSentData
This pointer points to an unsigned int value where the number of successfully sent data values
will be stored.

TPMC680-SW-42 – VxWorks Device Driver Page 24 of 32

EXAMPLE

#include “tpmc680api.h”

#define BUFSIZE 5

TPMC680_HANDLE hdl;
TPMC680_STATUS result;
unsigned short outBuf[BUFSIZE] = {0x1111,0x2222,0x3333,0x4444,0x5555};
unsigned int numData;

/*
** Read received data from 16-bit port (2)
*/
result = tpmc680Send16 (hdl,
 2,
 BUFSIZE,
 outBuf,
 &numData);
if (result != TPMC680_OK)
{
 /* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL A specified pointer is NULL.
TPMC680_ERR_CHRNG An invalid port number has been specified.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

Other returned error codes are system error conditions.

TPMC680-SW-42 – VxWorks Device Driver Page 25 of 32

2.2.8 tpmc680Receive32

NAME

tpmc680Receive32 – Read data received on 32-bit port

SYNOPSIS

TPMC680_STATUS tpmc680Receive32
(

TPMC680_HANDLE hdl,
unsigned int bufSize,
unsigned int *pBuf,
unsigned int *pValidData

)

DESCRIPTION

This function reads data that has been received on the 32 bit input port of the TPMC680.

The port must be configured in 32 bit input mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

bufSize
This argument specifies the number of data words (32 bit) which can be copied into the input
buffer.

pBuf
This pointer points to the input buffer where the received data will be stored to.

pValidData
This pointer points to an unsigned int value where the number of received (valid) data values
will be stored.

TPMC680-SW-42 – VxWorks Device Driver Page 26 of 32

EXAMPLE

#include “tpmc680api.h”

#define BUFSIZE 5

TPMC680_HANDLE hdl;
TPMC680_STATUS result;
unsigned int inBuf[BUFSIZE];
unsigned int numData;

/*
** Read received data from 32-bit port (2)
*/
result = tpmc680Receive32 (hdl,
 BUFSIZE,
 inBuf,
 &numData);
if (result == TPMC680_OK)
{
 for (i = 0; i < numData; i++)
 printf(“[%d] 0x%08X\n”, i, inBuf[i]);
}
else
{
 /* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL A specified pointer is NULL.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

Other returned error codes are system error conditions.

TPMC680-SW-42 – VxWorks Device Driver Page 27 of 32

2.2.9 tpmc680Send32

NAME

tpmc680Send32 – Send data on 32-bit port

SYNOPSIS

TPMC680_STATUS tpmc680Send32
(

TPMC680_HANDLE hdl,
unsigned int portNo,
unsigned int bufSize,
unsigned int *pBuf,
unsigned int *pSentData

)

DESCRIPTION

This function sends data on the 32 bit port of the TPMC680. The function places the data into a FIFO
and starts transmission. It will not wait until data is physically transmitted.

The port must be configured in 32 bit output mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port that shall be used. Valid values are 0 and 2.

bufSize
This argument specifies the number of data words (32 bit) in the output buffer.

pBuf
This pointer points to the output buffer containing the data ready to be sent.

pSentData
This pointer points to an unsigned int value where the number of successfully sent data values
will be stored.

TPMC680-SW-42 – VxWorks Device Driver Page 28 of 32

EXAMPLE

#include “tpmc680api.h”

#define BUFSIZE 3

TPMC680_HANDLE hdl;
TPMC680_STATUS result;
unsigned int outBuf[BUFSIZE] = {0x11112222,0x33334444,0x55556666};
unsigned int numData;

/*
** Send data on 32-bit port
*/
result = tpmc680Send32 (hdl,
 0,
 BUFSIZE,
 outBuf,
 &numData);
if (result != TPMC680_OK)
{
 /* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL A specified pointer is NULL.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.

Other returned error codes are system error conditions.

TPMC680-SW-42 – VxWorks Device Driver Page 29 of 32

2.2.10 tpmc680WaitForEvent

NAME

tpmc680WaitForEvent – Wait for a specified input event

SYNOPSIS

TPMC680_STATUS tpmc680WaitForEvent
(

TPMC680_HANDLE hdl,
unsigned int portNo,
unsigned int lineNo,
unsigned int transition,
unsigned int timeout

)

DESCRIPTION

This function waits for a specified event on a specified input line of the TPMC680.

The port must be configured in 8 bit or 64 bit input mode, otherwise the function will fail.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

portNo
This argument specifies the port. Valid values are between 0 and 7.

lineNo
This argument specifies the ports line number. Valid values are between 0 and 7.

transition
This argument specifies the transition event to wait for. The following events are supported:

Value Description
TPMC680_IO_EDGE_HI The event will occur if the specified input line changes from

Low to High.
TPMC680_IO_EDGE_LO The event will occur if the specified input line changes from

High to Low.
TPMC680_IO_EDGE_ANY The event will occur if the specified input line changes its

value.

TPMC680-SW-42 – VxWorks Device Driver Page 30 of 32

timeout
This argument specifies the timeout in milliseconds. If the specified event does not occur within
the specified time, the function will return with an error code. If the function shall never timeout a
value of TPMC680_WAIT_FOREVER must be specified.

EXAMPLE

#include “tpmc680api.h”

TPMC680_HANDLE hdl;
TPMC680_STATUS result;

/*
** Wait for a high to low transition on line 5 of port 6
** Timeout after 10000 milliseconds
*/
result = tpmc680WaitForEvent (hdl,
 6,
 5,
 TPMC680_IO_EDGE_LO,
 10000);
if (result != TPMC680_OK)
{
 /* handle error */
}

RETURNS

On success, TPMC680_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description
TPMC680_ERR_INVALID_HANDLE The specified TPMC680_HANDLE is invalid.
TPMC680_ERR_INVAL A specified argument contains an invalid value.
TPMC680_ERR_CHRNG An invalid port number has been specified.
TPMC680_ERR_ACCESS Access not allowed with current port configuration.
TPMC680_ERR_BUSY There is already an active job waiting for an event

on the specified input line.
TPMC680_ERR_TIMEOUT The function timed out

Other returned error codes are system error conditions.

TPMC680-SW-42 – VxWorks Device Driver Page 31 of 32

3 Driver Configuration
 Configuration of FIFO Depth 3.1
The depth of the FIFOs can be configured with the define TPMC680_FIFO_SIZE in tpmc680def.h.
The value defines the number of values that can be stored in each of the FIFOs. Changing this value
will change the size of the used system memory for each devices.

After changing the definition of TPMC680_FIFO_SIZE the driver must be rebuilt to make the
changes take effect.

TPMC680-SW-42 – VxWorks Device Driver Page 32 of 32

4 Debugging and Diagnostic
The TPMC680 device driver provides a function and debug statements to display versatile information
of the driver installation and status on the debugging console.

If the VxBus driver is used, the TPMC680 show routine is included in the driver by default and can be
called from the VxWorks shell. If this function is not needed or program space is rare the function can
be removed from the code by un-defining the macro INCLUDE_TPMC680_SHOW in tpmc680drv.c

The tpmc680Show function (only if VxBus is used) displays detailed information about probed
modules, assignment of devices respective device names to probed TPMC680 modules.

If TPMC680 modules were probed but no devices were created it may be helpful to enable debugging
code inside the driver code by defining the macro TPMC680_DEBUG in tpmc680drv.c.

In contrast to VxBus TPMC680 devices, legacy TPMC680 devices must be created “manually”.
This will be done with the first call to the tpmc680Open API function.

-> tpmc680Show

Probed Modules:
 [0] : Bus=0, Dev=16, DevId=0x02a8, VenId=0x1498, Init=OK, vxDev=0x2854d8

 [1] : Bus=0, Dev=17, DevId=0x02a8, VenId=0x1498, Init=OK, vxDev=0x2855d8

Associated Devices:
 [0] : /tpmc680/0

 [1] : /tpmc680/1
value = 1 = 0x1

