
The Embedded I/O Company

TPMC680-SW-65
Windows Device Driver

64 Digital Inputs/Outputs

Version 2.0.x

User Manual
Issue 2.0.1
March 2018

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany

Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com www.tews.com

TPMC680-SW-65 – Windows Device Driver Page 2 of 36

TPMC680-SW-65
Windows Device Driver

64 Digital Inputs/Outputs

Supported Modules:
TPMC680-10

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2003-2018 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0 First Issue January 16, 2003
1.0.1 File list changed, Installation chapter reviewed April 18, 2005
1.0.2 Title corrected June 3, 2005
1.0.3 New Address of TEWS LLC, File list changed January 11, 2007
1.0.4 General Revision, Return value of close() corrected May 15, 2007
1.0.5 Files moved to subdirectory June 23, 2008
2.0.0 Windows 7 support added, interface naming definitions modified February 25, 2011
2.0.0 General description of Installation and Windows support March 6, 2018

TPMC680-SW-65 – Windows Device Driver Page 3 of 36

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

Software Installation ...52.1
2.1.1 Windows XP ...5
2.1.2 Windows 7 and newer ..6
Confirming Windows Driver Installation ..62.2

3 DRIVER CONFIGURATION ... 7
FIFO Configuration ...73.1

4 DEVICE DRIVER PROGRAMMING ... 8
TPMC680 Files and I/O Functions ...84.1
4.1.1 Opening a Device ...8
4.1.2 Closing a Device...10
4.1.3 TPMC680 Device I/O Control Functions ..11

4.1.3.1 IOCTL_TPMC680_READ8..13
4.1.3.2 IOCTL_TPMC680_READ16..15
4.1.3.3 IOCTL_TPMC680_READ32..17
4.1.3.4 IOCTL_TPMC680_READ64..19
4.1.3.5 IOCTL_TPMC680_WRITE8 ..21
4.1.3.6 IOCTL_TPMC680_WRITE16 ..23
4.1.3.7 IOCTL_TPMC680_WRITE32 ..26
4.1.3.8 IOCTL_TPMC680_WRITE64 ..28
4.1.3.9 IOCTL_TPMC680_SETMODE..30
4.1.3.10 IOCTL_TPMC680_EVENTWAIT...34

TPMC680-SW-65 – Windows Device Driver Page 4 of 36

1 Introduction
The TPMC680-SW-65 Windows device driver is a kernel mode driver which allows the operation of the
supported hardware module on an Intel or Intel-compatible Windows operating system.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceIoControl) provide
the basic interface for opening and closing a resource handle and for performing device I/O control
operations.

The TPMC680-SW-65 device driver supports the following features:

direct reading and writing for output ports (8 bit / synchronous mode)
direct reading for input ports (8 bit / synchronous mode)
buffered read for input ports (16/32 bit handshake mode)
buffered write for output ports (16/32 bit handshake mode)
configuring ports
waiting for an input event (8 bit / synchronous mode)

The TPMC680-SW-65 device driver supports the modules listed below:

TPMC680-10 64 Digital Inputs/Outputs (PMC)

To get more information about the features and use of TPMC680 devices it is recommended to read
the manuals listed below.

TPMC680 User manual

TPMC680-SW-65 – Windows Device Driver Page 5 of 36

2 Installation
Following files are located in directory TPMC680-SW-65 on the distribution media:

i386\ Directory containing driver files for 32bit Windows versions
amd64\ Directory containing driver files for 64bit Windows versions
installer_32bit.exe Installation tool for 32bit systems (Windows XP or later)
installer_64bit.exe Installation tool for 64bit systems (Windows XP or later)
tpmc680.inf Windows installation script
tpmc680.h Header file with IOCTL codes and structure definitions
example\tpmc680exa.c Example application
TPMC680-SW-65-2.0.1.pdf This document
Release.txt Information about the Device Driver Release
ChangeLog.txt Release history

For installation the files have to be copied to the desired target directory.

Software Installation2.1

2.1.1 Windows XP
This section describes how to install the TPMC680 Device Driver on a Windows XP operating system.

After installing the TPMC680 card(s) and boot-up your system, Windows XP setup will show a "New
hardware found" dialog box.

1. The "Upgrade Device Driver Wizard" dialog box will appear on your screen.
Click "Next" button to continue.

2. In the following dialog box, choose "Search for a suitable driver for my device".
Click "Next" button to continue.

3. Insert the TPMC680 driver media; select "Disk Drive" in the dialog box.
Click "Next" button to continue.

4. Now the driver wizard should find a suitable device driver on the media.
Click "Next" button to continue.

5. Complete the upgrade device driver and click "Finish" to take all the changes effect.

6. Now copy all needed files (tpmc680.h) to the desired target directories.

After successful installation the TPMC680 device driver will start immediately and creates devices
(TPMC680_1, TPMC680_2 ...) for all recognized TPMC680 modules.

TPMC680-SW-65 – Windows Device Driver Page 6 of 36

2.1.2 Windows 7 and newer
This section describes how to install the TPMC680-SW-65 Device Driver on a Windows 7 (32bit or
64bit) operating system.

Depending on the operating system type, execute the installer binaries for either 32bit or 64bit
systems. This will install all required driver files using an installation wizard.

Copy needed files (tpmc680.h) to desired target directory.

After successful installation a device is created for each module found (TPMC680_1, TPMC680_2 ...).

Confirming Windows Driver Installation2.2
To confirm that the driver has been properly loaded, perform the following steps:

1. Open the Windows Device Manager:

a. For Windows XP, open the "Control Panel" from "My Computer" and click the
"System" icon and choose the "Hardware" tab, and then click the "Device Manager"
button.

b. For Windows 7, open the "Control Panel" from "My Computer" and then click the
"Device Manager" entry.

2. Click the "+" in front of "Embedded I/O".
The driver "TEWS TECHNOLOGIES – TPMC680 (64 digital I/O) (TPMC680-10)" should
appear for each installed device.

TPMC680-SW-65 – Windows Device Driver Page 7 of 36

3 Driver Configuration
FIFO Configuration3.1

After Installation of the TPMC680 Device Driver the FIFO size is set to its default value.

The default value is 100.

If the default value is not suitable the configuration can be changed by modifying the registry, for
instance with regedit.

To change the size of the FIFO the following value must be modified.

HKLM\System\CurrentControlSet\Services\TPMC680\Parameters\FifoSize

The size value must be greater than 2

TPMC680-SW-65 – Windows Device Driver Page 8 of 36

4 Device Driver Programming
The TPMC680-SW-65 Windows WDM device driver is a kernel mode device driver.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceIoControl) provide
the basic interface for opening and closing a resource handle and for performing device I/O control
operations.

All of these standard Win32 functions are described in detail in the Windows Platform SDK
Documentation (Windows base services / Hardware / Device Input and Output).

For details refer to the Win32 Programmers Reference of your used programming tools (C++, Visual
Basic etc.)

TPMC680 Files and I/O Functions4.1
The following section does not contain a full description of the Win32 functions for interaction with the
TPMC680 device driver. Only the required parameters are described in detail.

4.1.1 Opening a Device
Before you can perform any I/O the TPMC680 device must be opened by invoking the CreateFile
function. CreateFile returns a handle that can be used to access the TPMC680 device.

HANDLE CreateFile(
LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile

);

Parameters

lpFileName
This parameter points to a null-terminated string, which specifies the name of the TPMC680 to
open. The lpFileName string should be of the form \\.\TPMC680_x to open the device x. The
ending x is a one-based number. The first device found by the driver is \\.\TPMC680_1, the
second \\.\TPMC680_2 and so on.

dwDesiredAccess
This parameter specifies the type of access to the TPMC680.
For the TPMC680 this parameter must be set to read-write access (GENERIC_READ |
GENERIC_WRITE)

dwShareMode
Set of bit flags that specify how the object can be shared. Set to 0.

TPMC680-SW-65 – Windows Device Driver Page 9 of 36

lpSecurityAttributes
This argument is a pointer to a security structure. Set to NULL for TPMC680 devices.

dwCreationDistribution
Specifies the action to take on existing files, and which action to take when files do not exist.
TPMC680 devices must be always opened OPEN_EXISTING.

dwFlagsAndAttributes
Specifies the file attributes and flags for the file. This value must be set to 0 (no overlapped I/O).

hTemplateFile
This value must be NULL for TPMC680 devices.

Return Value

If the function succeeds, the return value is an open handle to the specified TPMC680 device. If the
function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call
GetLastError.

Example

HANDLE hDevice;

hDevice = CreateFile(
“\\\\.\\TPMC680_1”,
GENERIC_READ | GENERIC_WRITE,
0,
NULL, // no security attrs
OPEN_EXISTING, // TPMC680 device always open existing
0, // no overlapped I/O
NULL

);

if (hDevice == INVALID_HANDLE_VALUE) {
ErrorHandler("Could not open device"); // process error

}

See Also

CloseHandle(), Win32 documentation CreateFile()

TPMC680-SW-65 – Windows Device Driver Page 10 of 36

4.1.2 Closing a Device
The CloseHandle function closes an open TPMC680 handle.

BOOL CloseHandle(
HANDLE hDevice;

);

Parameters

BOOLEAN hDevice
Identifies an open TPMC680 handle.

Return Value

If the function succeeds, the return value is nonzero (TRUE).

If the function fails, the return value is zero (FALSE). To get extended error information, call
GetLastError.

Example

HANDLE hDevice;

if(!CloseHandle(hDevice)) {
ErrorHandler("Could not close device"); // process error

}

See Also

CreateFile (), Win32 documentation CloseHandle ()

TPMC680-SW-65 – Windows Device Driver Page 11 of 36

4.1.3 TPMC680 Device I/O Control Functions
The DeviceIoControl function sends a control code directly to a specified device driver, causing the
corresponding device to perform the specified operation.

BOOL DeviceIoControl(
HANDLE hDevice,
DWORD dwIoControlCode,
LPVOID lpInBuffer,
DWORD nInBufferSize,
LPVOID lpOutBuffer,
DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped

);

Parameters

hDevice
Handle to the TPMC680 that is to perform the operation.

dwIoControlCode
This parameter specifies the control code for the operation. This value identifies the specific
operation to be performed. The following values are defined in tpmc680.h:

Value Meaning
IOCTL_TPMC680_READ8 Read a port value from an 8 bit port
IOCTL_TPMC680_READ16 Read a buffered value from a 16 bit input port
IOCTL_TPMC680_READ32 Read a buffered value from a 32 bit input port
IOCTL_TPMC680_READ64 Read a port value from a 64 bit port
IOCTL_TPMC680_WRITE8 Write a port value to an 8 bit output port
IOCTL_TPMC680_WRITE16 Write buffered to a 16 bit buffered output port
IOCTL_TPMC680_WRITE32 Write buffered to a 32 bit buffered output port
IOCTL_TPMC680_WRITE64 Write a port value to a 64 bit output port
IOCTL_TPMC680_SETMODE Change port mode and direction
IOCTL_TPMC680_EVENTWAIT Wait for a specified input event

See behind for more detailed information on each control code.

lpInBuffer
Pointer to a buffer that contains the data required to perform the operation.

nInBufferSize
This argument specifies the size, in bytes, of the buffer pointed to by lpInBuffer.

lpOutBuffer
Pointer to a buffer that receives the operation’s output data.

nOutBufferSize
This argument specifies the size, in bytes, of the buffer pointed to by lpOutBuffer.

TPMC680-SW-65 – Windows Device Driver Page 12 of 36

lpBytesReturned
Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to
by lpOutBuffer. A valid pointer is required.

lpOverlapped
This argument is a pointer to an Overlapped structure. This value must be set to NULL (no
overlapped I/O).

To use these TPMC680 specific control codes the header file tpmc680.h must be included.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Note. The TPMC680 device driver returns always standard Win32 error codes on failure, please refer
to the Windows Platform SDK Documentation for a detailed description of returned error codes.

See Also

Win32 documentation DeviceIoControl ()

TPMC680-SW-65 – Windows Device Driver Page 13 of 36

4.1.3.1 IOCTL_TPMC680_READ8
This TPMC680 control function reads an 8 bit value directly from the specified port. A pointer to the
port number (ULONG) is passed by the parameter lpInBuffer. The pointer to the return buffer is
passed by the parameter lpOutBuffer to the driver.

After successful execution the port value (UCHAR) is returned in the specified return buffer
(lpOutBuffer).

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
ULONG portNo;
UCHAR val8;

portNo = 5; // read from port 5

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TPMC680_READ8, // control code
&portNo, // buffer with control information
sizeof(portNo),
&val8, // buffer which receives the port value
sizeof(UCHAR),
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
// Process data
printf(“INPUT: %02Xh\n”, val8);

}
else {

// Process DeviceIoControl() error
}

TPMC680-SW-65 – Windows Device Driver Page 14 of 36

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.
ERROR_INVALID_PARAMETER Invalid port number specified.
ERROR_NOACCESS This function is not allowed for this port in the

configured mode

All other returned error codes are system error conditions.

TPMC680-SW-65 – Windows Device Driver Page 15 of 36

4.1.3.2 IOCTL_TPMC680_READ16
This TPMC680 control function reads 16 bit values from the specified buffered input port. A pointer to
the port number (ULONG) is passed by the parameter lpInBuffer. The pointer to the return buffer is
passed by the parameter lpOutBuffer to the driver.

After successful execution a filled array of 16 bit values (USHORT) is returned in the specified return
buffer (lpOutBuffer).

The number of 16 bit data read with this function by maximum is limited with the buffer size. If there
are less data values stored in the FIFO, only the already received data values will be returned and the
NumBytes specifies the size of valid data.

Example

#include “tpmc680.h”

#define BUFMAX 10

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
ULONG portNo;
USHORT val16[BUFMAX];
int i;

//
// read 10 16bit words from port 2
//
portNo = 2;
success = DeviceIoControl (

hDevice, // TPMC680 handle
IOCTL_TPMC680_READ16, // control code
&portNo, // buffer with control information
sizeof(portNo),
&val16[0], // buffer which receives the port value
sizeof(USHORT) * BUFMAX,
&NumBytes, // number of bytes transferred
NULL

);

…

TPMC680-SW-65 – Windows Device Driver Page 16 of 36

…

if(success) {
// Process data
for (i = 0; i < BUFMAX; i++) {

printf(“(%d): %04Xh\n”, i, val16[i]);
}

}
else {

// Process DeviceIoControl() error
}

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.
ERROR_INVALID_PARAMETER Invalid port number specified.
ERROR_NOACCESS This function is not allowed for this port in the

configured mode

All other returned error codes are system error conditions.

TPMC680-SW-65 – Windows Device Driver Page 17 of 36

4.1.3.3 IOCTL_TPMC680_READ32
This TPMC680 control function reads 32 bit values from the specified buffered input port. A pointer to
the port number (ULONG) is passed by the parameter lpInBuffer. The pointer to the return buffer is
passed by the parameter lpOutBuffer to the driver.

After successful execution a filled array of 32 bit values (ULONG) is returned in the specified return
buffer (lpOutBuffer).

The number of 32 bit data read with this function by maximum is limited with the buffer size. If there
are less data values stored in the FIFO, only the already received data values will be returned and the
NumBytes specifies the size of valid data.

Example

#include “tpmc680.h”

#define BUFMAX 10

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
ULONG portNo;
ULONG val32[BUFMAX];

//
// read 10 32bit words from port 0
//
portNo = 0;
success = DeviceIoControl (

hDevice, // TPMC680 handle
IOCTL_TPMC680_READ32, // control code
&portNo, // buffer with control information
sizeof(portNo),
&val32[0], // buffer which receives the port value
sizeof(ULONG) * BUFMAX,
&NumBytes, // number of bytes transferred
NULL

);
…

TPMC680-SW-65 – Windows Device Driver Page 18 of 36

…
if(success) {

// Process data
for (i = 0; i < BUFMAX; i++) {

printf(“(%d): %08lXh\n”, i, val32[i]);
}

}
else {

// Process DeviceIoControl() error
}

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.
ERROR_INVALID_PARAMETER Invalid port number specified.
ERROR_NOACCESS This function is not allowed for this port in the

configured mode

All other returned error codes are system error conditions.

TPMC680-SW-65 – Windows Device Driver Page 19 of 36

4.1.3.4 IOCTL_TPMC680_READ64
This TPMC680 control function reads the current 64 bit value from the specified port. A pointer to the
port number (ULONG) is passed by the parameter lpInBuffer. The pointer to the return buffer is
passed by the parameter lpOutBuffer to the driver.

After successful execution a filled structure with 64 bit value (2*ULONG) is returned in the specified
return buffer (lpOutBuffer).

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
ULONG portNo;
ULONG val64[2];

//
// read 1 64bit word from port 0
//
portNo = 0;
success = DeviceIoControl (

hDevice, // TPMC680 handle
IOCTL_TPMC680_READ64, // control code
&portNo, // buffer with control information
sizeof(portNo),
&val64[0], // buffer which receives the port value
sizeof(ULONG) * 2,
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
// Process data
printf(“INPUT: %08lX %08lX h\n”, val64[0], val64[1]);

}
else {

// Process DeviceIoControl() error
}

TPMC680-SW-65 – Windows Device Driver Page 20 of 36

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.
ERROR_INVALID_PARAMETER Invalid port number specified.
ERROR_NOACCESS This function is not allowed for this port in the

configured mode

All other returned error codes are system error conditions.

TPMC680-SW-65 – Windows Device Driver Page 21 of 36

4.1.3.5 IOCTL_TPMC680_WRITE8
This TPMC680 control function writes an 8 bit value directly to the specified output port. A pointer to
the write buffer (TPMC680_WRITE_8BIT_BUF) is passed by the parameter lpInBuffer to the driver.

The lpOutBuffer is not used and should be a NULL pointer.

typedef struct {
ULONG portNo; // Port number to handle
UCHAR data; // 8 bit data

} TPMC680_WRITE_8BIT_BUF, *PTPMC680_WRITE_8BIT_BUF;

Members

portNo
This member specifies the port that shall be changed. Valid values are 0 up to 7.

data
This argument specifies the new output value.

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TPMC680_WRITE_8BIT_BUF wr8Buf;

wr8Buf.portNo = 3; // write to port 3
wr8Buf.data = 0x55; // new output value

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TPMC680_WRITE8, // control code
&wr8Buf, // buffer with control information
sizeof(wr8Buf),
NULL, // buffer which receives the port value
0,
&NumBytes, // number of bytes transferred
NULL

);

…

TPMC680-SW-65 – Windows Device Driver Page 22 of 36

…

if(success) {
// Write OK

}
else {

// Process DeviceIoControl() error
}

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.
ERROR_INVALID_PARAMETER Invalid port number specified.
ERROR_NOACCESS This function is not allowed for this port in the

configured mode

All other returned error codes are system error conditions.

TPMC680-SW-65 – Windows Device Driver Page 23 of 36

4.1.3.6 IOCTL_TPMC680_WRITE16
This TPMC680 control function writes 16 bit values buffered to the output. A pointer to the write buffer
(with head TPMC680_WRITE_16BIT_BUF) is passed by the parameter lpInBuffer to the driver. The
buffer size depends on the number of data that shall be transferred. For calculating the memory
amount needed for the specified number of data can be calculated with the
TPMC680_BUFSIZE16(<number of data values>) macro.

The lpOutBuffer is not used and should be a NULL pointer.

The number of send bytes will be returned in NumBytes.

typedef struct {
ULONG portNo; // Port number to handle
ULONG numData; // Number of Data values
USHORT data[1]; // 16 bit data buffer

} TPMC680_WRITE_16BIT_BUF, *PTPMC680_WRITE_16BIT_BUF;

Members

portNo
This member specifies the port that shall be changed. Valid values are 0 and 2.

numData
This argument specifies the number of data values (16 bit) following.

data[1]
This array prototype specifies the beginning of the output values.

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TPMC680_WRITE_16BIT_BUF *pwr16Buf;
int bufSize;

…

TPMC680-SW-65 – Windows Device Driver Page 24 of 36

…

// Get buffer
bufSize = TPMC680_BUFSIZE16(8); // 8 data values shall be written
pwr16Buf = (TPMC680_WRITE_16BIT_BUF*)malloc(bufSize);

pwr16Buf->portNo = 2; // write to port 2
pwr16Buf->numData = 8; // 8 data values shall be written
pwr16Buf->data[0] = 0x1111;
pwr16Buf->data[1] = 0x2222;
pwr16Buf->data[2] = 0x3333;
pwr16Buf->data[3] = 0x4444;
pwr16Buf->data[4] = 0x5555;
pwr16Buf->data[5] = 0x6666;
pwr16Buf->data[6] = 0x7777;
pwr16Buf->data[7] = 0x8888;

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TPMC680_WRITE16, // control code
pwr16Buf, // buffer with control information
bufSize,
NULL,
0,
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
// Write OK

}
else {

// Process DeviceIoControl() error
}

free (pwr16Buf);

TPMC680-SW-65 – Windows Device Driver Page 25 of 36

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.
ERROR_INVALID_PARAMETER Invalid port number specified.
ERROR_NOACCESS This function is not allowed for this port in the

configured mode

All other returned error codes are system error conditions.

TPMC680-SW-65 – Windows Device Driver Page 26 of 36

4.1.3.7 IOCTL_TPMC680_WRITE32
This TPMC680 control function writes 32 bit values buffered to the output. A pointer to the write buffer
(with head TPMC680_WRITE_32BIT_BUF) is passed by the parameter lpInBuffer to the driver. The
buffer size depends on the number of data that shall be transferred. For calculating the memory
amount needed for the specified number of data can be calculated with the
TPMC680_BUFSIZE32(<number of data values>) macro. The lpOutBuffer is not used and should be a
NULL pointer.

The number of send bytes will be returned in NumBytes.

typedef struct {
ULONG portNo; // Port number to handle
ULONG numData; // Number of Data values
ULONG data[1]; // 32 bit data buffer

} TPMC680_WRITE_32BIT_BUF, *PTPMC680_WRITE_32BIT_BUF;

Members

portNo
This member specifies the port that shall be changed. The only valid value is 0.

numData
This argument specifies the number of data values (32 bit) following.

data[1]
This array prototype specifies the beginning of the output values.

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TPMC680_WRITE_32BIT_BUF *pwr32Buf;
int bufSize;

// Get buffer
bufSize = TPMC680_BUFSIZE32(6); // 6 data values shall be written
pwr32Buf = (TPMC680_WRITE_32BIT_BUF*)malloc(bufSize);

…

TPMC680-SW-65 – Windows Device Driver Page 27 of 36

…

pwr32Buf->portNo = 2; // write to port 2
pwr32Buf->numData = 6; // 6 data values shall be written
pwr32Buf->data[0] = 0x11223344;
pwr32Buf->data[1] = 0x22334455;
pwr32Buf->data[2] = 0x33445566;
pwr32Buf->data[3] = 0x44556677;
pwr32Buf->data[4] = 0x55667788;
pwr32Buf->data[5] = 0x66778899;

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TPMC680_WRITE32, // control code
pwr32Buf, // buffer with control information
bufSize,
NULL,
0,
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
// Write OK

}
else {

// Process DeviceIoControl() error
}

free (pwr32Buf);

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.
ERROR_INVALID_PARAMETER Invalid port number specified.
ERROR_NOACCESS This function is not allowed for this port in the

configured mode

All other returned error codes are system error conditions.

TPMC680-SW-65 – Windows Device Driver Page 28 of 36

4.1.3.8 IOCTL_TPMC680_WRITE64
This TPMC680 control function writes a 64 bit value directly to the specified output port. A pointer to
the write buffer (TPMC680_WRITE_64BIT_BUF) is passed by the parameter lpInBuffer to the driver.

The lpOutBuffer is not used and should be a NULL pointer.

typedef struct {
ULONG portNo; // Port number to handle
ULONG data[2]; // 64 bit data

} TPMC680_WRITE_64BIT_BUF, *PTPMC680_WRITE_64BIT_BUF;

Members

portNo
This member specifies the port that shall be changed. The only valid value is 0.

data
This array specifies the new output value. Index 0 specifies the output for ports 7..4 and index 1
specifies the value for ports 3..0.

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TPMC680_WRITE_64BIT_BUF wr64Buf;

wr64Buf.portNo = 0; // write to port 0
wr64Buf.data[0] = 0x77665544; // new output value port 7/6/5/4
wr64Buf.data[1] = 0x33221100; // new output value port 3/2/1/0

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TPMC680_WRITE64, // control code
&wr64Buf, // buffer with control information
sizeof(wr64Buf),
NULL,
0,
&NumBytes, // number of bytes transferred
NULL

);
…

TPMC680-SW-65 – Windows Device Driver Page 29 of 36

…

if(success) {
// Write OK

}
else {

// Process DeviceIoControl() error
}

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.
ERROR_INVALID_PARAMETER Invalid port number specified.
ERROR_NOACCESS This function is not allowed for this port in the

configured mode

All other returned error codes are system error conditions.

TPMC680-SW-65 – Windows Device Driver Page 30 of 36

4.1.3.9 IOCTL_TPMC680_SETMODE
This TPMC680 control function configures the port size and direction. A pointer to the configuration
buffer (TPMC680_MODE_BUF) is passed by the parameter lpInBuffer to the driver.

The lpOutBuffer is not used and should be a NULL pointer.

typedef struct {
ULONG portNo; // Port number to handle
ULONG Size; // Port size
ULONG Direction; // Port direction
ULONG HSMode; // Handshake Output Mode
ULONG HSFifo; // Handshake Output Fifo Mode

} TPMC680_MODE_BUF, *PTPMC680_MODE_BUF;

Members

portNo
This member specifies the port that shall be configured. Valid values are between 0 and 7.

Size
This argument specifies the port size. The following table describes the allowed port sizes and
for which ports they are allowed.
Value Ports Description
TPMC680_MODE_SIZE_8BIT 0,1,2,3,4,5,6,7 The port has a width of 8 bit. Each port

can be accessed separately.
TPMC680_MODE_SIZE_16BIT 0,2 The port has a width of 16 bit and the

output is controlled by the handshake
signals. Two ports are used together. If
port 0 is selected port 1 is used also. If
port 2 is selected also port 3 will be
used. The configuration of the
connected ports is always adapted. If
this mode is selected for any port the
handshake port 4 will be configured as
an 8-bit input port.

TPMC680_MODE_SIZE_32BIT 0 The port has a width of 32 bit and the
output is controlled by the handshake
signals. The ports 0, 1, 2 and 3 will be
used together. The configuration of the
connected ports is always set together.
If this mode is selected the handshake
port 4 will be configured as an 8-bit
input port.

TPMC680_MODE_SIZE_64BIT 0 All ports are connected and can be
used as simple 64 bit input or output
port. All ports get the same
configuration.

TPMC680-SW-65 – Windows Device Driver Page 31 of 36

Direction
This member specifies direction of the port. All connected ports will get the same direction.
Allowed values are:
Value Description
TPMC680_MODE_DIR_INPUT The port will be used as an input port.
TPMC680_MODE_DIR_OUTPUT The port will be used as an output port.

HSMode
This value specifies the handshake mode and is only valid if the port shall be configured in 16 or
32 bit handshake mode (TPMC680_MODE_SIZE_16BIT, TPMC680_MODE_SIZE_32BIT).
Using an output handshake, will change the direction of port 4 to input and port 5 to output. The
allowed values are:
Value Description
TPMC680_MODE_HSFLAG_NO No output handshake will be used.
TPMC680_MODE_HSFLAG_INTERLOCKED The interlocked output handshake mode

will be used.
TPMC680_MODE_HSFLAG_PULSED The pulsed output handshake mode will be

used.

HSFifo
This value specifies the handshake event depending on the handshake FIFO fill level. This
value is only used if an output handshake is configured. The values are:
Value Description
TPMC680_MODE_HSFIFOEV_NOTFULL The event announces FIFO is not full.
TPMC680_MODE_HSFIFOEV_EMPTY The event announces FIFO is empty.

Changing a port size from big to small will also change the mode of the previously connected
ports. The ports will be set into 8 bit mode and they will keep their direction.

TPMC680-SW-65 – Windows Device Driver Page 32 of 36

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TPMC680_MODE_64BIT_BUF modeBuf;

//
// setup port 2 for 16 bit Handshake mode
// port direction is output, HS output shall be pulsed mode
// HS event on FIFO empty
//
modeBuf.portNo = 2;
modeBuf.Size = TPMC680_MODE_SIZE_16BIT;
modeBuf.Direction = TPMC680_MODE_DIR_OUTPUT;
modeBuf.HSMode = TPMC680_MODE_HSFLAG_PULSED;
modeBuf.HSFifo = TPMC680_MODE_HSFIFOEV_EMPTY;

// This setting will affect port 2, 3 and the HS ports 4 and 5

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TPMC680_SETMODE, // control code
&modeBuf, // buffer with control information
sizeof(modeBuf),
NULL,
0,
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
// Setup OK

}
else {

// Process DeviceIoControl() error
}

TPMC680-SW-65 – Windows Device Driver Page 33 of 36

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.
ERROR_INVALID_PARAMETER Invalid port number, Size, Handshake or FIFO mode is

specified.
ERROR_NOACCESS This function is not allowed for this port in the

configured mode. Another port is controls this port.

All other returned error codes are system error conditions.

TPMC680-SW-65 – Windows Device Driver Page 34 of 36

4.1.3.10 IOCTL_TPMC680_EVENTWAIT
This TPMC680 control function waits until a specified input event occurs. A pointer to the event buffer
(TPMC680_EVENT_BUF) is passed by the parameter lpInBuffer to the driver.

The lpOutBuffer is not used and should be a NULL pointer.

typedef struct {
ULONG portNo; // Port number to handle
ULONG lineNo; // Input Line, event shall occur on
ULONG transition; // Specify transition
ULONG timeout; // timeout in seconds

} TPMC680_EVENT_BUF, *PTPMC680_EVENT_BUF;

Members

portNo
This member specifies the port to wait for. Valid values are between 0 and 7.

lineNo
This member specified the line to wait for. Valid values are between 0 and 7.

transition
This member specifies the event to wait for. The following events are supported:
Value Description
TPMC680_IO_EDGE_HI The event will occur if the specified input line changes from

Low to High.
TPMC680_IO_EDGE_LO The event will occur if the specified input line changes from

High to Low.
TPMC680_IO_EDGE_ANY The event will occur if the specified input line changes its

value.

timeout
This argument specifies the timeout in seconds. If the specified event does not occur in the
specified time, the function will return with an error code. Specify a negative value to wait
indefinitely.

This function is only supported for 8 bit and 64 bit ports. Other configurations will return an
error code.

TPMC680-SW-65 – Windows Device Driver Page 35 of 36

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TPMC680_EVENT_64BIT_BUF evBuf;

//
// Wait for an event on port 4, line 6
// Selected event: high-to-low transition (falling edge)
// timeout after 15 seconds
//
evBuf.portNo = 4;
evBuf.lineNo = 6;
evBuf.transition = TPMC680_IO_EDGE_LO;
evBuf.timeout = 15;

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TPMC680_EVENTWAIT,// control code
&evBuf, // buffer with control information
sizeof(evBuf),
NULL,
0,
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
// Event occurred

}
else {

// Process DeviceIoControl() error
}

TPMC680-SW-65 – Windows Device Driver Page 36 of 36

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.
ERROR_INVALID_PARAMETER Invalid port, line number or event is specified.
ERROR_NOACCESS This function is not allowed for this port in the

configured mode.
ERROR_IRQ_BUSY Another process is already waiting for this event.
ERROR_SEM_TIMEOUT The specified time has expired without the event

occurred.
ERROR_OPERATION_ABORTED The event wait operation has been cancelled.

All other returned error codes are system error conditions.

