
The Embedded I/O Company

TPMC821-SW-42
VxWorks Device Driver

INTERBUS Master G4 PMC

Version 1.4

User Manual
Issue 1.2

January 2004

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek / Germany
Phone: +49-(0)4101-4058-0 Fax: +49-(0)4101-4058-19
e-mail: info@tews.com www.tews.com

TEWS TECHNOLOGIES LLC
1 E. Liberty Street, Sixth Floor Reno, Nevada 89504 / USA
Phone: +1 (775) 686 6077 Fax: +1 (775) 686 6024
e-mail: usasales@tews.com www.tews.com

TPMC821-SW-42 - VxWorks Device Driver Page 2 of 37

TPMC821-SW-42
INTERBUS Master G4 PMC

VxWorks Device Driver

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2000-2004 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0 First Issue January 2000
1.1 Support for Intel x86 based targets June 2000
1.2 General Revision January 2004

TPMC821-SW-42 - VxWorks Device Driver Page 3 of 37

Table of Content
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Install the driver to VxWorks system..5
2.2 Including the driver in VxWorks ..5
2.3 Hardware and system dependencies..5
2.4 Special installation for Intel x86 based targets..7

3 I/O SYSTEM FUNCTIONS.. 8
3.1 tp821Drv() ..8
3.2 tp821DevCreate()...9

4 I/O INTERFACE FUNCTIONS.. 11
4.1 open() ...11
4.2 read() ..13
4.3 write() ...18
4.4 ioctl() ..22

4.4.1 FIO_TP821_BIT_CMD ..23
4.4.2 FIO_TP821_MBX_WAIT ...25
4.4.3 FIO_TP821_MBX_NOWAIT..27
4.4.4 FIO_TP821_GET_DIAG..29
4.4.5 FIO_TP821_CONFIGURE...31
4.4.6 FIO_TP821_SET_HOST_FAIL..33
4.4.7 FIO_TP821_REMOVE_HOST_FAIL...34
4.4.8 FIO_TP821_CLEAR_HWERROR ...35

5 APPENDIX.. 36
5.1 Predefined Symbols..36
5.2 Additional Error Codes...37

TPMC821-SW-42 - VxWorks Device Driver Page 4 of 37

1 Introduction
The TPMC821-SW-42 VxWorks device driver allows the operation of the TPMC821 PMC conforming
to the VxWorks system specification. This includes a device-independent basic I/O interface with
open(), read(), write() and ioctl() functions.

Special I/O operation that do not fit to the standard I/O calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

This driver invokes a mutual exclusion and binary semaphore mechanism to prevent simultaneous
requests by multiple tasks from interfering with each other.

To prevent the application program for losing data, incoming messages will be stored in a message
FIFO with a depth of 100 messages.

This device driver supports the following features:

 use all possible bus operation modes

o asynchronous mode without consistency locking

o asynchronous mode with consistency locking

o bus synchronous mode

o program synchronous mode

 use bit commands

 use mailbox commands

 read data

 write data

 control the host interrupt request

 reset hardware error

TPMC821-SW-42 - VxWorks Device Driver Page 5 of 37

2 Installation
The software is delivered on a 3½" HD diskette.

Following files are located on the diskette:

tp821drv.c TPMC821 Device Driver Source
tpmc821.h TPMC821 Include File for driver and application
tp821def.h TPMC821 Driver Include File
tp821exa.c TPMC821 Example Application
tpmctime.h Include file with delay macro
tpmc_pci.c PCI dependent functions
tpmc_pci.h PCI dependent include
tp821_pci.c TPMC821 PCI MMU mapping for Intel x86 based targets
tpxxxhwdep.c Collection of hardware dependent functions
tpxxxhwdep.h Include for hardware dependent functions

For installation the files have to be copied to the desired target directory.

2.1 Install the driver to VxWorks system
To install the TPMC821 device driver to the VxWorks system following steps have to be done:

 Build the object code of the TPMC821 device driver

 Link or load the driver object file to the VxWorks system

 Call the tp821Drv() function to install the driver.

2.2 Including the driver in VxWorks
How to include the device drive in the VxWorks system is described in the VxWorks and Tornado
manuals.

2.3 Hardware and system dependencies
The TPMC821 can be mounted to different hardware. This will sometimes need some hardware
dependant adaptation.

PCI Initialization

The hardware must be configured before starting the driver. The following points must be guaranteed:

 The PCI spaces of the TPMC821 (PLX9050) must be set up to unused PCI areas. Memory and I/O
accesses must be enabled in the PCI configuration space (see example below).

 The PCI interrupts must be set up (Interrupt routing and handler).

TPMC821-SW-42 - VxWorks Device Driver Page 6 of 37

BSP dependencies

The tpmc_pci.c file has to be adapted, because there are some hardware and system dependent
values (only PowerPC targets). Please check the following values:

 PCI_MEM_BRIDGE_OFFSET This must be set to the offset, which is added by the PCI bridge
(refer to BSP) when accessing PCI memory.

 PCI_IO_BRIDGE_OFFSET This must be set to the offset, which is added by the PCI bridge
(refer to BSP) when accessing PCI I/O spaces.

 int_dev_no (array) This array defines the interrupt vectors/levels for #INTA of the
different device position (first index = bus number, second index
= device number). These values or the size of the table have to
be adapted (if using busses with higher bus numbers). The
interrupt vectors/levels depend on BSP.

Time factor

A counter constant is the last thing, which has to be configured. This constant is used for a delay,
which is needed by the INTERBUS G4 controller in synchronous mode. The constant and a wait
macro (waiting 5 s) are placed in the file tpmctime.h. There is a little function tp821_TestTime() in the
example code, which will help to find the right constant. This value should always be calibrated when
using a synchronous operation mode. It is not necessary for asynchronous operation modes.

The device driver uses this delay during the interrupt function. This may delay other tasks and
interrupts (the times will be < 100 s).

TPMC821-SW-42 - VxWorks Device Driver Page 7 of 37

2.4 Special installation for Intel x86 based targets
The TPMC821 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU. If the contents of this macro are equal to I80386, I80386 or PENTIUM special Intel x86
conforming code and function calls will be included.

The second problem for Intel x86 based platforms can’t be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’t map PCI memory spaces of devices
which are not used by the BSP, the required CAN controller device registers can’t be accessed.

To solve this problem a MMU mapping entry has to be added for the required TPMC821 PCI memory
spaces prior the MMU initialization (usrMmuInit()) is done.

Please examine the BSP documentation or contact the BSP Vendor whether the BSP perform
automatic PCI and MMU configuration or not. If the PCI and MMU initialization is done by the BSP the
function tp821PciInit() won’t be included and the user can skip to the following steps.

The C source file tp821pci.c contains the function tp821PciInit(). This routine finds out all TPMC821
devices and adds MMU mapping entries for all used PCI memory spaces. Please insert a call to this
function after the PCI initialization is done and prior to MMU initialization (usrMmuInit()).

If the Tornado 2.0 project facility is used, the right place to call the function tp821PciInit() is at the end
of the function sysHwInit() in sysLib.c (can be opened from the project Files window).

If Tornado 1.0.1 compatibility tools are used insert the call to tp821PciInit() at the beginning of the root
task (usrRoot()) in usrConfig.c.

Be sure that the function is called prior to MMU initialization otherwise the TPCM821 PCI spaces
remains unmapped and an access fault occurs during driver initialization.

Please insert the following call at a suitable place in either sysLib.c or usrConfig.c:

To link the driver object modules to VxWorks, simply add all necessary driver files to the project. If
Tornado 1.0.1 Standard BSP Builds... is used add the object modules to the macro MACH_EXTRA
inside the BSP Makefile (MACH_EXTRA = tp821drv.o tp821pci.o ...).

The function tp821PciInit() was designed for and tested on generic Pentium targets. If another
BSP is used, please refer to BSP documentation or contact the technical support for required
adaptation.

If strange errors appeared after system startup with the new build system please carrying out a
VxWorks build clean and build all.

TPMC821-SW-42 - VxWorks Device Driver Page 8 of 37

3 I/O system functions
This chapter describes the driver-level interface to the I/O system. The purpose of these functions is to
install the driver in the I/O system, add and initialize devices.

3.1 tp821Drv()
NAME
tp821Drv() - installs the TPMC821 driver in the I/O system.

SYNOPSIS
void tp821Drv(void)

DESCRIPTION
This function installs the TPMC821 driver in the I/O system.

The call of this function is the first thing the user has to do before adding any device to the system or
performing any I/O request.

RETURNS
OK or ERROR (if the driver cannot be installed)

INCLUDE FILES
tpmc821.h

TPMC821-SW-42 - VxWorks Device Driver Page 9 of 37

3.2 tp821DevCreate()
NAME
tp821DevCreate() - adds TPMC821 device to the system and initializes device hardware.

SYNOPSIS
STATUS tp821DevCreate
 (
 char *name, /* name of the device to create */
 int busNo, /* bus number where the module is moutned */
 int deviceNo, /* device number where the module is mounted */
 int functionNo /* function number, must be always ‘0’ */
)

DESCRIPTION
This routine is called to add a device to the system that will be serviced by the TPMC821 driver. This
function must be called before performing any I/O request to this driver.

There are several device dependent arguments required for the device initialization and allocation of
the system resources.

PARAMETER
The argument name specifies the name, which will select the device in future calls.

The arguments busNo and deviceNo specify the position of the TPMC821. These values are system
dependent (refer to the carrier manual).

The argument functionNo must be left ‘0’. This value selects the module function. The TPMC821
supports only one function.

EXAMPLE

TPMC821-SW-42 - VxWorks Device Driver Page 10 of 37

RETURNS
OK or ERROR

INCLUDE FILES
tpmc821.h

TPMC821-SW-42 - VxWorks Device Driver Page 11 of 37

4 I/O interface functions
This chapter describes the interface to the basic I/O system used for communication over the
INTERBUS.

4.1 open()
NAME
open() - opens a device or file.

SYNOPSIS
int open
 (
 const char *name, /* name of the device to open */
 int flags, /* not used for TPMC821 driver, must be ‘0’ */
 int mode /* not used for TPMC821 driver, must be ‘0’ */
)

DESCRIPTION
Before I/O can be performed to the TPMC821 device, a file descriptor must be opened by invoking the
basic I/O function open().

PARAMETER
The parameter name selects the device which shall be opened.

The parameters flags and mode are not used and must be 0.

EXAMPLE

RETURNS
A device descriptor number or ERROR (if the device does not exist or no device descriptors are
available)

TPMC821-SW-42 - VxWorks Device Driver Page 12 of 37

INCLUDE FILES
vxworks.h

tpmc821.h

SEE ALSO
ioLib, basic I/O routine - open()

TPMC821-SW-42 - VxWorks Device Driver Page 13 of 37

4.2 read()
NAME
read() – reads data from the specified TPMC821 device.

SYNOPSIS
int read
 (
 int fd, /* device descriptor from opened TPMC821 device */
 char *buffer, /* pointer to the data buffer */
 size_t maxbytes /* not used */
)

PARAMETER
The parameter fd is a file descriptor specifying the device which shall be used.

The argument buffer points to a driver-specific I/O parameter block. This buffer is segmented into
parts with the data structure of the type TP821_RW_SEGMENT (see below).

The parameter maxbytes is not used by the TPMC821 Device Driver.

data structure TP821_RW_SEGMENT
typedef struct
{
unsigned short itemNumber; /* number of items (bytes, w..) */
unsigned short itemType; /* TP821_BYTE|TP821_WORD|.. */
unsigned short dataOffset; /* Byte Off. in DATA IN/OUT reg */
union
 {
 unsigned char byte[1];
 unsigned short word[1];
 unsigned long lword[1];
 } u;
} TP821_RW_SEGMENT;

The argument itemNumber specifies how many elements of the specified type will follow.

The itemType specifies the length of the data element. Allowed values are:

TP821_END Specifies the last segment of a segment list for data
commands, no data follows.

TP821_BYTE Specifies a segment with byte data. The union part byte will
be used (Datalength = itemNumber * 1 byte).

TP821_WORD Specifies a segment with word data. The union part word will
be used (Datalength = itemNumber * 2 byte).

TP821_LWORD Specifies a segment with longword data. The union part
lword will be used (Datalength = itemNumber * 4 byte).

TPMC821-SW-42 - VxWorks Device Driver Page 14 of 37

The argument dataOffset specifies the offset in the data area of the TPMC821. The specified data will
be read from the data in base address + dataOffset (in byte).

The union u marks the first element of the data area of the segment. The area size is not specified by
this array. It is specified with the itemNumber argument.

The data structure TP821_RW_SEGMENT will be put over the data buffer.

There are two MACROS defined in tpmc821.h, which will help setting up the data buffer.

The 1st function SEGMENT_SIZE(pSeg) calculates the length of the data segment. The data segment
must be specified with the segment pointer in pSeg.

The 2nd function NEXT_SEGMENT(pSeg) calculates the start of the next segment. The actual data
segment must be specified with the segment pointer in pSeg. The new data pointer will be the return
value (see example below).

Example

The transmitted data shall be split into two segments and an end segment. The 1st segment shall have
a size of 8 bytes, the 2nd segment shall have a size of 2 longwords. The contents of the 1st segment
shall be read from data offset 8 and the 2nd segment shall be read from position 0. The data buffer
segmentation will have the following layout.

Segment values (before calling the read function):

1st segment:

itemNumber: 8

itemType: TP821_BYTE

itemOffset: 0x008

data: (8 byte)

2nd segment:

itemNumber: 2

itemType: TP821_LWORD

itemOffset: 0x000

data: (2 longwords)

End segment:

itemNumber: 0

itemType: TP821_END

itemOffset: 0x000

data: (none)

TPMC821-SW-42 - VxWorks Device Driver Page 15 of 37

The data buffer has the following layout (before calling the read function):

Offset +0 +1 +2 +3 +4 +5 +6 +7
+0x00 0x00 0x08 0x00 0x01 0x00 0x08 xx xx

+0x08 xx xx xx xx xx xx 0x00 0x02

+0x10 0x00 0x04 0x00 0x00 xx xx xx xx

+0x18 xx xx xx xx 0x00 0x00 0x00 0x00

+0x20 0x00 0x00 xx xx xx xx xx xx

The data input area of the TPMC821:

Offset +0 +1 +2 +3 +4 +5 +6 +7
+0x00 0x12 0x34 0x56 0x78 0x9A 0xBC 0xDE 0xF0
+0x08 0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77

The data buffer has the following layout (after calling the read function):

Offset +0 +1 +2 +3 +4 +5 +6 +7
+0x00 0x00 0x08 0x00 0x01 0x00 0x08 0x00 0x11

+0x08 0x22 0x33 0x44 0x55 0x66 0x77 0x00 0x02

+0x10 0x00 0x04 0x00 0x00 0x12 0x34 0x56 0x78

+0x18 0x9A 0xBC 0xDE 0xF0 0x00 0x00 0x00 0x00

+0x20 0x00 0x00 xx xx xx xx xx xx

Segment values (after calling the read function):

1st segment:

itemNumber: 8

itemType: TP821_BYTE

itemOffset: 0x008

data: 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77

2nd segment:

itemNumber: 2

itemType: TP821_LWORD

itemOffset: 0x000

data: 0x12345678, 0x9ABCDEF0

End segment:

itemNumber: 0

itemType: TP821_END

itemOffset: 0x000

data: (none)

TPMC821-SW-42 - VxWorks Device Driver Page 16 of 37

EXAMPLE

TPMC821-SW-42 - VxWorks Device Driver Page 17 of 37

RETURNS

ERROR or length of data buffer

INCLUDES

vxworks.h

tpmc821.h

SEE ALSO
ioLib, basic I/O routine - read()

TPMC821-SW-42 - VxWorks Device Driver Page 18 of 37

4.3 write()
NAME
write() – writes data to the specified TPMC821 device.

SYNOPSIS
int write
 (
 int fd, /* device descriptor from opened TPMC821 device */
 char *buffer, /* pointer to the data buffer */
 size_t bytes /* not used */
)

PARAMETER
The parameter fd is a file descriptor specifying the device which shall be used.

The argument buffer points to a driver-specific I/O parameter block. This data structure is named
TP821_RW_SEGMENT (see below).

The parameter bytes is not used by the TPMC821 Device Driver.

data structure TP821_RW_SEGMENT
typedef struct
{
unsigned short itemNumber; /* number of items (bytes, w..) */
unsigned short itemType; /* TP821_BYTE|TP821_WORD|.. */
unsigned short dataOffset; /* Byte Off. in DATA IN/OUT reg */
union
 {
 unsigned char byte[1];
 unsigned short word[1];
 unsigned long lword[1];
 } u;
} TP821_RW_SEGMENT;

The argument itemNumber specifies how many elements of the specified type will follow.

The itemType specifies the length of the data element. Allowed values are:

TP821_END Specifies the last segment of a segment list for data
commands, no data follows.

TP821_BYTE Specifies a segment with byte data. The union part byte will
be used (Datalength = itemNumber * 1 byte).

TP821_WORD Specifies a segment with word data. The union part word will
be used (Datalength = itemNumber * 2 byte).

TP821_LWORD Specifies a segment with longword data. The union part
lword will be used (Datalength = itemNumber * 4 byte).

TPMC821-SW-42 - VxWorks Device Driver Page 19 of 37

The argument dataOffset specifies the offset in the data area of the TPMC821. The specified data will
be written to the data in base address + dataOffset (in byte).

The union u marks the first element of the data area of the segment. The area size is not specified by
this array. It is specified with the itemNumber argument.

The data structure TP821_RW_SEGMENT will be put over the data buffer.

There are two MACROS defined in tpmc821.h, which will help setting up the data buffer.

The 1st function SEGMENT_SIZE(pSeg) calculates the length of the data segment. The data segment
must be specified with the segment pointer in pSeg.

The 2nd function NEXT_SEGMENT(pSeg) calculates the start of the next segment. The actual data
segment must be specified with the segment pointer in pSeg. The new data pointer will be the return
value (see example below).

Example

There are two data segments that shall be transmitted. The 1st segment has a size of 8 bytes, the 2nd

segment shall have a size of 2 longwords. The contents of the 1st segment shall be written to data
offset 8 and the 2nd segment shall be written to position 0. The data buffer segmentation will have the
following layout.

Segment values:

1st segment:

itemNumber: 8

itemType: TP821_BYTE

itemOffset: 0x008

data: 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77

2nd segment:

itemNumber: 2

itemType: TP821_LWORD

itemOffset: 0x000

data: 0x12345678, 0x9ABCDEF0

End segment:

itemNumber: 0

itemType: TP821_END

itemOffset: 0x000

data: (none)

TPMC821-SW-42 - VxWorks Device Driver Page 20 of 37

The data buffer has the following layout:

Offset +0 +1 +2 +3 +4 +5 +6 +7
+0x00 0x00 0x08 0x00 0x01 0x00 0x08 0x00 0x11

+0x08 0x22 0x33 0x44 0x55 0x66 0x77 0x00 0x02

+0x10 0x00 0x04 0x00 0x00 0x12 0x34 0x56 0x78

+0x18 0x9A 0xBC 0xDE 0xF0 0x00 0x00 0x00 0x00

+0x20 0x00 0x00 xx xx xx xx xx xx

The data output area of the TPMC821 (after writing):

Offset +0 +1 +2 +3 +4 +5 +6 +7
+0x00 0x12 0x34 0x56 0x78 0x9A 0xBC 0xDE 0xF0
+0x08 0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77

 EXAMPLE

TPMC821-SW-42 - VxWorks Device Driver Page 21 of 37

RETURNS
ERROR or length of data buffer

INCLUDE FILES
vxworks.h

tpmc821.h

SEE ALSO
ioLib, basic I/O routine - write()

TPMC821-SW-42 - VxWorks Device Driver Page 22 of 37

4.4 ioctl()
NAME
ioctl() - performs an I/O control function.

SYNOPSIS
int ioctl
(

int fd, /* device descriptor from opened TPMC821 device */
int request, /* select of control function */
int arg /* parameter buffer */

)

DESCRIPTION
Special I/O operation that do not fit to the standard basic I/O calls (read, write) will be performed by
calling the ioctl() function.

PARAMETER
The parameter fd specifies the device descriptor of the opened TPMC821 device.

The parameter request specifies the function which shall be executed.

The structure arg depends on the selected request (see description below).

RETURNS
OK or ERROR (if an error occurred)

INCLUDE FILES
vxworks.h

tpmc821.h

SEE ALSO
ioLib, basic I/O routine - ioctl()

TPMC821-SW-42 - VxWorks Device Driver Page 23 of 37

4.4.1 FIO_TP821_BIT_CMD
This function code is used to execute a bit command. The bit command starts and executes a
standard function. These functions and command bits are defined by the INTERBUS Master
Firmware.

The request dependent argument arg points to a union named TP821_CNTRL_STRUCT.

data union TP821_CNTRL_STRUCT:
typedef union
{

TP821_IOC_BCMD_STRUCT bcmd; /* FIO_TP821_BIT_CMD */
 TP821_IOC_MBX_STRUCT mbx; /* FIO_TP821_MBX_WAIT */
 /* FIO_TP821_MBX_NOWAIT */
 TP821_IOC_DIAG_STRUCT diag; /* FIO_TP821_GET_DIAG */
 TP821_IOC_CONFIG_STRUCT config; /* FIO_TP821_CONFIGURE */
} TP821_CNTRL_STRUCT;

For this function code the bcmd option is used. bcmd is a data structure named
TP821_IOC_BCMD_STRUCT.

data structure TP821_IOC_BCMD_STRUCT:
typedef struct
{
 int cmdBit; /* Command bit (0..13) */
 unsigned short cmdParam; /* Command parameter */
} TP821_IOC_BCMD_STRUCT;

The argument cmdBit specifies the command bit.

The parameter for the command bit operation is specified in the cmdParam argument.

More information about the command bits and the parameter values can be found in the User Manuals
for the INTERBUS Generation 4 which is parts of the TPMC821-DOC Engineering Documentation.

TPMC821-SW-42 - VxWorks Device Driver Page 24 of 37

EXAMPLE

TPMC821-SW-42 - VxWorks Device Driver Page 25 of 37

4.4.2 FIO_TP821_MBX_WAIT
This function executes a mailbox command on the specified TPMC821 and waits for completion and a
result will be returned.

The request dependent argument arg points to a union named TP821_CNTRL_STRUCT.

data union TP821_CNTRL_STRUCT:
typedef union
{
 TP821_IOC_BCMD_STRUCT bcmd; /* FIO_TP821_BIT_CMD */

TP821_IOC_MBX_STRUCT mbx; /* FIO_TP821_MBX_WAIT */
 /* FIO_TP821_MBX_NOWAIT */
 TP821_IOC_DIAG_STRUCT diag; /* FIO_TP821_GET_DIAG */
 TP821_IOC_CONFIG_STRUCT config; /* FIO_TP821_CONFIGURE */
} TP821_CNTRL_STRUCT;

For this function code the mbx option is used. mbx is a data structure named
TP821_IOC_MBX_STRUCT.

data structure TP821_IOC_MBX_STRUCT:
typedef struct
{
 int cmdSize; /* Command size in words */
 unsigned short* cmdBuffer; /* Pointer to parameter buffer */
 int resultSize; /* Result size in words */
 unsigned short* resultBuffer; /* Pointer to result buffer */
} TP821_IOC_MBX_STRUCT;

The argument cmdSize specifies the length of the command buffer cmdBuffer, which will be
transmitted to the TPMC821.

The resultSize argument must specify the maximal length of result buffer ResultBuffer. When calling
the function, after execution it returns the valid length of the resultBuffer.

More information about the mailbox commands and the parameters can be found in the User Manuals
for the INTERBUS Generation 4 which is parts of the TPMC821-ED Engineering Documentation.

TPMC821-SW-42 - VxWorks Device Driver Page 26 of 37

EXAMPLE

TPMC821-SW-42 - VxWorks Device Driver Page 27 of 37

4.4.3 FIO_TP821_MBX_NOWAIT
This function executes a mailbox command on the specified TPMC821 and do not wait for completion.

The request dependent argument arg points to a union named TP821_CNTRL_STRUCT.

data union TP821_CNTRL_STRUCT:
typedef union
{
 TP821_IOC_BCMD_STRUCT bcmd; /* FIO_TP821_BIT_CMD */

TP821_IOC_MBX_STRUCT mbx; /* FIO_TP821_MBX_WAIT */
 /* FIO_TP821_MBX_NOWAIT */
 TP821_IOC_DIAG_STRUCT diag; /* FIO_TP821_GET_DIAG */
 TP821_IOC_CONFIG_STRUCT config; /* FIO_TP821_CONFIGURE */
} TP821_CNTRL_STRUCT;

For this function code the mbx option is used. mbx is a data structure named
TP821_IOC_MBX_STRUCT.

data structure TP821_IOC_MBX_STRUCT:
typedef struct
{
 int cmdSize; /* Command size in words */
 unsigned short* cmdBuffer; /* Pointer to parameter buffer */
 int resultSize; /* Result size in words */
 unsigned short* resultBuffer; /* Pointer to result buffer */
} TP821_IOC_MBX_STRUCT;

The argument cmdSize specifies the length of the command buffer cmdBuffer, which will be
transmitted to the TPMC821.

The argument resultSize and resultBuffer are not used by this function.

More information about the mailbox commands and the parameters can be found in the User Manuals
for the INTERBUS Generation 4 which is parts of the TPMC821-ED Engineering Documentation.

TPMC821-SW-42 - VxWorks Device Driver Page 28 of 37

EXAMPLE

TPMC821-SW-42 - VxWorks Device Driver Page 29 of 37

4.4.4 FIO_TP821_GET_DIAG
This function returns diagnostic information from the specified TPMC821.

The request dependent argument arg points to a union named TP821_CNTRL_STRUCT.

data union TP821_CNTRL_STRUC':
typedef union
{
 TP821_IOC_BCMD_STRUCT bcmd; /* FIO_TP821_BIT_CMD */
 TP821_IOC_MBX_STRUCT mbx; /* FIO_TP821_MBX_WAIT */
 /* FIO_TP821_MBX_NOWAIT */

TP821_IOC_DIAG_STRUCT diag; /* FIO_TP821_GET_DIAG */
 TP821_IOC_CONFIG_STRUCT config; /* FIO_TP821_CONFIGURE */
} TP821_CNTRL_STRUCT;

For this function code the diag option is used. diag is a data structure named
TP821_IOC_DIAG_STRUCT.

data structure TP821_IOC_DIAG_STRUCT:
typedef struct
{
 unsigned short sysfailReg; /* contents of Sysfail Register */
 unsigned short configReg; /* contents of Config Register */
 unsigned short diagReg; /* contents of Diag. Register */
 unsigned char hardwareFail; /* HW failure has been detected */
 unsigned char initComplete; /* HW init has completed with success */
} TP821_IOC_DIAG_STRUCT;

The returned values of sysfailReg, configReg and diagReg are the actual values of the
corresponding hardware registers Status Sysfail Register, Configuration Register and Master
Diagnostic Status Register. Information about these registers and their flags can be found in the User
Manuals for the INTERBUS Generation 4 which is parts of the TPMC821-ED Engineering
Documentation.

The hardwareFail argument returns TRUE if a hardware failure occurred or FALSE if no hardware
failure occurred.

The initComplete argument returns TRUE if the INTERBUS firmware has completed initialization. If it
is still initializing FALSE value will be returned.

TPMC821-SW-42 - VxWorks Device Driver Page 30 of 37

EXAMPLE

TPMC821-SW-42 - VxWorks Device Driver Page 31 of 37

4.4.5 FIO_TP821_CONFIGURE
This function can be used to announce a changing of the operation mode to the driver and to change
the timeout values for mailbox and data accesses.

The request dependent argument arg points to a union named TP821_CNTRL_STRUCT.

data union TP821_CNTRL_STRUCT:
typedef union
{
 TP821_IOC_BCMD_STRUCT bcmd; /* FIO_TP821_BIT_CMD */
 TP821_IOC_MBX_STRUCT mbx; /* FIO_TP821_MBX_WAIT */
 /* FIO_TP821_MBX_NOWAIT */
 TP821_IOC_DIAG_STRUCT diag; /* FIO_TP821_GET_DIAG */

TP821_IOC_CONFIG_STRUCT config; /* FIO_TP821_CONFIGURE */
} TP821_CNTRL_STRUCT;

For this function code the config option is used. config is a data structure named
TP821_IOC_CONFIG_STRUCT.

data structure TP821_IOC_CONFIG_STRUCT:
typedef struct
{
 unsigned long op_mode; /* operation mode */
 long dt_timeout; /* Data Timeout in seconds */
 long mb_timeout; /* Mailbox Timeout in seconds */
} TP821_IOC_CONFIG_STRUCT;

The argument op_mode announces the new operation mode. Detailed information about the
operation modes and how to start them can be found in the User Manuals for the INTERBUS
Generation 4 which is parts of the TPMC821-ED Engineering Documentation. Possible values are:

TP821_ASYNC asynchronous operation mode (default)
TP821_ASYNC_LOCK asynchronous operation mode with consistency locking
TP821_BUSSYNC bus synchronous mode
TP821_PRGSYNC program synchronous

The argument dt_timout specifies a new timeout value for data accesses. This value must be
specified in seconds.

The argument mb_timout specifies a new timeout value for mailbox accesses. This value must be
specified in seconds.

TPMC821-SW-42 - VxWorks Device Driver Page 32 of 37

EXAMPLE

TPMC821-SW-42 - VxWorks Device Driver Page 33 of 37

4.4.6 FIO_TP821_SET_HOST_FAIL
This function sets the host interrupt request to announce a serious host system failure. How to use the
host interrupt is described in the TIP821 User Manual and in the User Manuals for the INTERBUS
Generation 4 which are parts of the TPMC821-ED Engineering Documentation.

The request dependent argument arg is not used for this function.

EXAMPLE

TPMC821-SW-42 - VxWorks Device Driver Page 34 of 37

4.4.7 FIO_TP821_REMOVE_HOST_FAIL
This function removes the host interrupt request which announces a serious host system failure. How
to use the host interrupt is described in the TIP821 User Manual and in the User Manuals for the
INTERBUS Generation 4 which is parts of the TPMC821-ED Engineering Documentation.

The request dependent argument arg is not used for this function.

EXAMPLE

TPMC821-SW-42 - VxWorks Device Driver Page 35 of 37

4.4.8 FIO_TP821_CLEAR_HWERROR
This function clears the hardware error flag, which is set on service interrupt requests generated on
hardware failures of the INTERBUS Master. More information about the service interrupt request can
be found in the TIP821 User Manual and in the User Manuals for the INTERBUS Generation 4 which
is parts of the TPMC821-ED Engineering Documentation.

The request dependent argument arg is not used for this function.

EXAMPLE

TPMC821-SW-42 - VxWorks Device Driver Page 36 of 37

5 Appendix
This chapter describes the symbols which are defined in the file tpmc821.h.

5.1 Predefined Symbols
Segment Types

TP821_END 0 Specify the last segment of a segment list for
data commands

TP821_BYTE 1 Specify a segment with byte data
TP821_WORD 2 Specify a segment with word data
TP821_LWORD 4 Specify a segment with longword data

Operating Modes

TP821_ASYNC 1 Specify asynchronous operation mode
without consistency locking

TP821_ASYNC_LOCK 2 Specify asynchronous operation mode with
consistency locking

TP821_BUSSYNC 3 Specify bus synchronous operation mode
TP821_PRGSYNC 4 Specify program synchronous operation

mode

Special Control Functions

FIO_TP821_BIT_CMD 110 Special function code selecting the bit
command

FIO_TP821_MBX_WAIT 111 Special function code selecting the mailbox
command waiting for a result

FIO_TP821_MBX_NOWAIT 112 Special function code selecting the mailbox
command, not waiting for a result

FIO_TP821_GET_DIAG 113 Special function code selecting the diagnostic
function, which reads the device state

FIO_TP821_CONFIGURE 114 Special function code selecting the function to
configure the device parameter

FIO_TP821_SET_HOST_FAIL 115 Special function code to set the host fail
interrupt request

FIO_TP821_REMOVE_HOST_FAIL 116 Special function code to removing the host
fail interrupt request

FIO_TP821_CLEAR_HWERROR 117 Special function code for removing the
hardware error flag, which disables data
accesses

TPMC821-SW-42 - VxWorks Device Driver Page 37 of 37

5.2 Additional Error Codes
If the device driver creates an error the error codes are stored in the errno. They can be read with the
VxWorks function errnoGet() or printErrno().

S_tp821Drv_NXIO 0x08210001 There is no TPMC821 mounted to the
specified location.

S_tp821Drv_ICMD 0x08210002 An illegal function code has been
selected.

S_tp821Drv_MEMERR 0x08210003 Driver can not allocate memory.
S_tp821Drv_PARAERR 0x08210004 An illegal parameter value has been

specified.
S_tp821Drv_DEVERR 0x08210005 A device I/O error occurred (TPMC821 is

not ready).
S_tp821Drv_BUSY 0x08210006 Selected device is already busy.
S_tp821Drv_ILLBUFSIZE 0x08210007 Specified buffer size is too small.
S_tp821Drv_TIMEOUT 0x08210008 Request timed out.
S_tp821Drv_ILLBIT 0x08210009 An illegal bit has been specified.
S_tp821Drv_BUSSTOPPED 0x0821000A The specified access is not working with

a stopped INTERBUS.

