TEWS &

The Embedded I/O Company TECHNOLOGIES

TPMC851-SW-82

Linux Device Driver
Multifunction 1/0 (16-bit DAC/ADC, TTL I/O, Counter)

Version 1.1.x

User Manual

Issue 1.1.1
September 2019

powerB ridge NS TECHNOLOGIES GmbH

Computer 1 Bahnhof 7 25469 Halstenbek, Germany
1014058 0 Fax: +49 (0) 4101 4058 19
Dtews.com www.tews.com

Ehlbeek 15a

30938 Burgwedel .

fon 05139-9980-0 www.powerbridge.de
fax 05139-9980-49 info@powerbridge.de

TEWS <

TECHNOLOGIES

TPMC851-SW-82
Linux Device Driver

Multifunction I/O
(16-bit DAC/ADC, TTL I/O, Counter)

Supported Modules:

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH

TPMC851 . .
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.
©2005-2019 by TEWS TECHNOLOGIES GmbH
Issue Description Date
1.0.0 First Issue December 12, 2005
1.0.1 New Address TEWS LLC, Changelog.txt added to file list December 3, 2006
1.0.2 General revision November 26, 2008
1.0.3 Address of TEWS LLC removed August 5, 2009
1.04 General revision February 14, 2012
1.1.0 Correction of Counter Input Mode definition December 3, 2014
(TPMC851_M_CNTIN_QUAD3X to TPMC851_M_CNTIN_QUAD4X)
Correction of value for wait without timeout
1.1.1 File-List modified September 24, 2019

TPMC851-SW-82 — Linux Device Driver

Page 2 of 55

4

Table of Contents

INTRODUCTION.......otiiiiierrr s nsss e s
INSTALLATION......otiiiiiiiiccinnrrrr s ssssss e e

2.1 Build and install the Device Driver.........cccocnvmerninnsmessesneennn.
2.2 Uninstall the Device DIiVerccccoimmemnsmse s s
2.3 Install Device Driver into the running Kernel...........cccoocivieeinennninns
2.4 Remove Device Driver from the running Kernel...........ccccceiiiiiinninnes
2.5 Change Major Device Numberccccoommiiiinciic e

/O FUNCTIONS ...t

B R T o oYY
B 20 o o = - Y
B 20 T Yo [

3.3.1 TPMC851_I0C_ADC _READoooooieereeeeeeeeeeeeeeeseeeseeeeeee.
3.3.2 TPMC851_IOC_ADC_SEQCONFIG.......o.coovooveioeiorereeeran.
3.3.3 TPMC851_IOC_ADC_SEQSTARToiviveioeeeeeeeeeeeeereenen.
3.34 TPMC851_IOC_ADC_SEQSTOPoocoiivmivoreeemeeeoereeerersne.
3.35 TPMC851_IOC_ADC_SEQREAD.........cooooiivemieooreeesresreeenenn.
3.36 TPMC851_I0C_DAC_WRITE ...,
3.3.7 TPMC851_IOC_DAC_SEQCONFIG......oooeovemeroeeeererrrerrn.
3.3.8 TPMC851_IOC_DAC _SEQSTARToivioeieeeeeeeeeeeeeeereene.
3.3.9 TPMC851_IOC_DAC_SEQSTOPoocooiviivoreeoeroeeeeeeeee.
3.3.10 TPMC851_IOC_DAC_SEQWRITEooovvvoorvoeeeeeeeeeeeene.
3.3.11 TPMC851_IOC_DAC_SEQSTATE ...ovvivooooeeoeeeeeeeeeeee.
3.3.12 TPMC851_I0C_10_READ ...,
3.3.13 TPMC851_10C_10 WRITEciveeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeee.
3.3.14 TPMC851_10C_I0_EVENTWAITooivoieeeieeieeeeeeeeeeeeeeeee.
3.3.15 TPMC851_I0C_I0_CONFIG ..o,
3.3.16 TPMC851_IOC_I0_DEBCONFIG.......oveeveeeeereeererereresseeeseen.
3.3.17 TPMC851_I0C_CNT_READ......oeieeeeeeeeeeeeeeeeeeeeeeeseesseeesee.
3.3.18 TPMC851_I0C_CNT_MATCHWAITovvvevereeeeeeeeeeeesen.
3.3.19 TPMC851_I0C_CNT_CTRLWAIT ..o,
3.3.20 TPMC851_I0C_CNT_CONFIG.....iveveereerieeeeeeeeeeseeeseeeesee.
3.3.21 TPMC851_I0C_CNT _RESET ..o,
3.3.22 TPMC851_|I0C_CNT_SETPRELD......ooiiveieeeeeeeeererenereeneee.
3.3.23 TPMC851_I0C_CNT_SETMATCHvoiveereeeeeeeeeeeeeeeene.

DIAGNOSTIC..... .ot

TPMC851-SW-82 — Linux Device Driver

TEWS <

TECHNOLOGIES

Page 3 of 55

TEWS <

TECHNOLOGIES

1 Introduction

The TPMC851-SW-82 Linux device driver allows the operation of the TPMC851 PMC conforming to
the Linux 1/0O system specification. This includes a device-independent basic I/O interface with open(),
close() and joctl() functions.

Special /O operation that do not fit to the standard 1/0 calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

The TPMC851-SW-82 device driver supports the following features:

Executing AD conversion and reading input value
Setting up, Starting and Stopping ADC Input Sequencer
Configuring ADC Sequencer Trigger 1/0

Reading ADC Sequencer input data

Setting output value and starting DA conversion
Setting up, Starting and Stopping DAC Sequencer
Configuring DAC Sequencer Trigger 1/0

Setting DAC Sequencer Data

Reading digital 1/0 data

Setting digital output data

Configuring I/O direction and input debouncer
Waiting for input events

Reading counter value

Resetting counter value

Configuring counter mode and controls

Setting preload and match value

Waiting for counter events

YVVVVVVVYVYVVVVVVVYYVYYY

The TPMC851-SW-82 device driver supports the modules listed below:

TPMC851 16(32) ADC, 8 DAC, 16 1/0, 1 counter (PMC)
To get more information about the features and use of TPMC851 device it is recommended to read

the manuals listed below.

TPMCB851 User Manual

TPMC851-SW-82 — Linux Device Driver Page 4 of 55

TEWS <

TECHNOLOGIES

2 Installation

The directory TPMC851-SW-82 on the distribution media contains the following files:

TPMC851-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
TPMC851-SW-82-1.1.1.pdf PDF copy of this manual

Release.txt Release information

Changelog.txt Release history

The GZIP compressed archive TPMC851-SW-82-SRC.tar.gz contains the following files and
directories:

Directory path ‘./tpmc851/’;

tpmc851.c TPMC851 device driver source

tpmc851def.h TPMC851 driver include file

tpmc851.h TPMCB851 include file for driver and application
makenode Script to create device nodes on the file system
Makefile Device driver make file

include/config.h Driver independent library header file
include/tpmodule.h Driver and kernel independent library header file
include/tpmodule.c Driver and kernel independent library source file
include/tpxxxhwdep.h HAL library header file

include/tpxxxhwdep.c HAL library source file

example/tpmc851exa.c Example application

example/Makefile Example application make file

COPYING Copy of the GNU Public License (GPL)

In order to perform an installation, extract all files of the archive TPMC851-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TPMC851-SW-82-SRC.tar.gz’ will extract the files
into the local directory.

e Login as root and change to the target directory

e Copy tpmc851.h to /usr/include

2.1 Build and install the Device Driver

e Login as root

e Change to the target directory

e To create and install the driver in the module directory /lib/modules/<version>/misc enter:
make install

e Only after the first build we have to execute depmod to create a new dependency description
for loadable kernel modules. This dependency file is later used by modprobe to automatically
load dependent kernel modules.

depmod -aq

TPMC851-SW-82 — Linux Device Driver Page 5 of 55

TEWS <

TECHNOLOGIES

2.2 Uninstall the Device Driver

Login as root
Change to the target directory

To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

Update kernel module dependency description file

depmod -aq

2.3 Install Device Driver into the running Kernel

To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tpmc851drv

After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a dynamic device file system (devfs or sysfs with udev) then you have to
skip running the makenode script. Instead of creating device nodes from the script the driver
itself takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each compatible channel found. The first
PMC module can be accessed with device node /dev/tpmc851 0, the second module with device
node /dev/tpmc851_1 and so on.

The assignment of device nodes to physical PMC modules depends on the search order of the PCI
bus driver.

2.4 Remove Device Driver from the running Kernel

To remove the device driver from the running kernel login as root and execute the following
command:

modprobe —-r tpmc851drv

If your kernel has enabled devfs or sysfs (udev), all /dev/tpmc851 * nodes will be automatically
removed from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tpmc851drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe —r again.

TPMC851-SW-82 — Linux Device Driver Page 6 of 55

TEWS <

TECHNOLOGIES

2.5 Change Major Device Number

The TDRVO011 driver uses dynamic allocation of major device numbers by default. If this isn’t suitable
for the application it is possible to define a major number for the driver. If the kernel has enabled devfs
the driver will not use the symbol TPMC851_MAJOR.

To change the major number edit the file {pmc851def.h, change the following symbol to appropriate
value and enter make install to create a new driver.

TPMC851_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means

dynamic number allocation.

Example:

#define TPMC851 MAJOR 122

Be sure that the desired major number isn’t used by other drivers. Please check /proc/devices
to see which numbers are free.

TPMC851-SW-82 — Linux Device Driver Page 7 of 55

TEWS <

TECHNOLOGIES

31/0 Functions

This chapter describes the interface to the device driver 1/0O system.

3.1 open

NAME

open() - open a file descriptor

SYNOPSIS
#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise
OR of the appropriate parameters (using the | operator in C).

See also the GNU C Library documentation for more information about the open function and open
flags.

EXAMPLE

int fd;

fd = open(“/dev/tpmc851 07, O RDWR);
if (fd == -1)
{

/* handle error condition */

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of —1 is returned. The global variable errno contains the detailed error code.

TPMC851-SW-82 — Linux Device Driver Page 8 of 55

TEWS <

TECHNOLOGIES

ERRORS
Error Code Description
ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description — Low-
Level Input/Output.

SEE ALSO

GNU C Library description — Low-Level Input/Output

TPMC851-SW-82 — Linux Device Driver Page 9 of 55

TEWS <

TECHNOLOGIES

3.2 close

NAME

close() — close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0)
{

/* handle close error conditions */

RETURNS

The normal return value from close is 0. In the case of an error, a value of —1 is returned. The global
variable errno contains the detailed error code.

ERRORS
Error Code Description
ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description — Low-
Level Input/Output.

SEE ALSO

GNU C Library description — Low-Level Input/Output

TPMC851-SW-82 — Linux Device Driver Page 10 of 55

TEWS <

TECHNOLOGIES

3.3 ioctl

NAME

ioctl() — device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in t{pmc851.h:

Symbol Meaning
TPMC851_I0C_ADC_READ Read value from ADC channel
TPMC851_IOC_ADC_SEQCONFIG Configure ADC sequencer channel
TPMC851 |I0C_ADC _SEQSTART Start ADC sequencer
TPMC851_10C_ADC_SEQSTOP Stop ADC sequencer
TPMC851_|IOC_ADC_SEQREAD Read values from ADC sequencer buffer
TPMC851_I0C_DAC_WRITE Write value to DAC channel
TPMC851_IOC_DAC_SEQCONFIG Configure DAC sequencer channel
TPMC851 |I0C_DAC_SEQSTART Start DAC sequencer
TPMC851_|0C_DAC_SEQSTOP Stop DAC sequencer
TPMC851_IOC_DAC_SEQWRITE Write values to DAC sequencer buffer
TPMC851_|IOC_DAC_SEQSTATE Get DAC sequencer and information
TPMC851_IOC_IO_READ Read from digital I/0
TPMC851_IOC_IO_WRITE Write to digital I/0
TPMC851_IOC_IO_EVENTWAIT Wait for 1/0 event

TPMC851_I0C _10_CONFIG Configure digital 1/0

TPMC851_I0C _10_DEBCONFIG Configure digital 1/0 (input) debouncer

(continued on the next page)

TPMC851-SW-82 — Linux Device Driver Page 11 of 55

TEWS <

TECHNOLOGIES

(... continued)

TPMC851_IOC_CNT_READ
TPMC851_IOC_CNT_MATCHWAIT
TPMC851_IOC_CNT_CTRLWAIT
TPMC851_IOC_CNT_CONFIG
TPMC851_IOC_CNT_RESET
TPMC851_IOC_CNT_SETPRELD
TPMC851_IOC_CNT_SETMATCH

Read value from counter/timer
Wait for counter match event
Wait for counter control event
Configure counter

Reset counter

Set counter preload value

Set counter match value

See behind for more detailed information on each control code.

the application.

To use these TPMC851 specific control codes the header file tpmc851.h must be included in

RETURNS

On success, zero is returned. In the case of an error, a value of —1 is returned. The global variable

errno contains the detailed error code.

ERRORS
Error Code Description
EINVAL Invalid argument. This error code is returned if the requested ioctl function is
unknown. Please check the argument request
EFAULT Parameter data can not be copied to the drivers context

Other function dependent error codes will be described for each ioctl code separately. Note, the
TPMC851 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TPMC851-SW-82 — Linux Device Driver

Page 12 of 55

TEWS <

TECHNOLOGIES

3.3.1 TPMC851_IOC_ADC_READ

NAME

TPMC851_IOC_ADC_READ - Read value from ADC channel

DESCRIPTION

This function starts an ADC conversion with specified parameters, waits for completion and returns the
value.

The ADC sequencer must be stopped for single ADC conversions.

A pointer to the read structure (TPMC851_ADC _READ _ BUF) is passed by the parameter arg to the

driver.

typedef struct

{
int channel;
int gain;
unsigned long flags;
short adcValue;

} TPMC851_ADC_READ_BUF;

channel
Specifies the ADC channel number. Valid values are 1..16 for differential input and 1..32 for
single-ended input.

gain
Specifies the input gain. Valid gain values are 1, 2, 4, and 8.

TPMC851-SW-82 — Linux Device Driver Page 13 of 55

TEWS <

TECHNOLOGIES

flags

Is an ored value of the following flags:

Flag
TPMC851_F_CORR

TPMC851_F_IMMREAD

TPMC851_F_DIFF

adcValue

Description

If set the function will return a corrected value of the input
data in adcValue. Factory set and module dependent
correction data is used for correction.

If not set, the raw value read from the module will be returned
in adcValue.

If set the driver will start the conversion without waiting for
settling time. This should only be used if the previous
conversion has used the same interface parameters (channel,
gain, differential/single-ended).

If not set the driver will use the automatic mode, which sets
interface configuration, waits settling time and then starts the
conversion.

If set the input channel will be a differential input.
If not set the input channel will be a single-ended input.

This value will return the read ADC value.

EXAMPLE

#include “tpmc851.h”

int fd;

int result;
TPMC851 ADC READ BUF adcReadBuf;

/* Read a corrected value from differential channel 2, use a gain of 4 */

adcReadBuf.channel = 2;
adcReadBuf.gain = 4;
adcReadBuf.flags

TPMC851 F CORR | TPMC851 F DIFF;

TPMC851-SW-82 — Linux Device Driver

Page 14 of 55

TEWS <

TECHNOLOGIES

printf ("Read from ADC ... ");

result ioctl (fd,
TPMC851 IOC ADC_READ,
&adcReadBuf) ;

if (result >= 1)
{
printf ("OK\n") ;
printf (" ADC-value: %d", adcReadBuf.adcValue);

/* process ioctl error */

ERRORS
Error Code Description
EBUSY The ADC sequencer is currently running
ECHRNG Specified channel is invalid
EINVAL Specified gain level is invalid
ETIME The ADC conversion timed out

TPMC851-SW-82 — Linux Device Driver Page 15 of 55

TEWS <

TECHNOLOGIES

3.3.2 TPMC851_IOC_ADC_SEQCONFIG

NAME

TPMC851_I0C_ADC_SEQCONFIG — Configure ADC sequencer channel

DESCRIPTION

This function enables and configures, or disables an ADC channel for sequence use.

The ADC sequencer must be stopped to execute this function.

A pointer to the configuration structure (TPMC851 _ADC SEQCONFIG_BUF) is passed by the
parameter arg to the driver.

typedef struct

{
int channel;
int enable;
int gain;
unsigned long flags;

} TPMC851_ADC_SEQCONFIG_BUF;

channel
Specifies the ADC channel number to configure. Valid values are 1..16 for differential input and
1..32 for single-ended input.

enable
Specifies if the channel shall be used in sequencer mode or not. (0 disables the channel any
other value will enable the channel)

gain
Specifies the input gain. Valid gain values are 1, 2, 4, and 8.

flags
Is an ored value of the following flags:
Flag Description
TPMC851_F_CORR If set the sequencer will return a corrected value for the

specified channel. Factory set and module dependent
correction data is used for correction.

If not set, the raw value read from the module will be
returned.

TPMC851_F_DIFF If set the input channel will be a differential input.
If not set the input channel will be a single-ended input.

TPMC851-SW-82 — Linux Device Driver Page 16 of 55

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tpmc851.h”

int fd;
int result;
TPMC851 ADC SEQCONFIG BUF adcSeqConfBuf;

/*
** Configure single-ended channel 3, using a gain of 4 and returning

** corrected data when the sequencer is running

*/

adcSeqgConfBuf.channel = 3;
adcSeqgConfBuf.enable = TRUE;
adcSeqgConfBuf.gain = 4;
adcSeqConfBuf.flags = TPMC851 F CORR;
printf ("Configure channel for Sequencer ... ");
result = ioctl(fd,

TPMC851 IOC ADC_SEQCONFIG,
&adcSeqgConfBuf) ;
if (result >= 1)
{
printf ("OK\n") ;

else
{
/* process ioctl error */
}
ERRORS
Error Code Description
EBUSY The ADC sequencer is currently running
ECHRNG Specified channel is invalid
EINVAL Specified gain level or flags are invalid

TPMC851-SW-82 — Linux Device Driver Page 17 of 55

TEWS <

TECHNOLOGIES

3.3.3 TPMC851_IOC_ADC_SEQSTART

NAME

TPMC851_I0C_ADC_SEQSTART — Start ADC sequencer

DESCRIPTION

This function configures the ADC sequencer time and starts the ADC sequencer.

A pointer to the start structure (TPMC851_ADC SEQSTART_BUF) is passed by the parameter arg to
the driver.

typedef struct

{
unsigned short cycTime;
unsigned long flags;
long bufSize;

} TPMC851_ADC_SEQSTART_BUF;

cycTime

Specifies the ADC sequencer cycle time. The sequencer time is specified in 100us steps. With
a value of 0, the “Sequencer Continuous Mode” is selected.

flags
Is an ored value of the following flags:
Flag Description
TPMC851_F EXTTRIGSRC If set the ADC sequencer is trigger with digital I/O line 0.
If not set, the ADC sequencer uses the ADC cycle counter.

TPMC851_F EXTTRIGOUT If set the ADC trigger is used as output on digital I/O line 0.

TPMC851_F _EXTTRIGSRC and TPMC851_F_EXTTRIGOUT cannot be used at the same
time.

bufSize

Specifies the internal ADC sequencer buffer size. The sequencer stores the incoming values
inside an internal buffer, from where the user application retrieves the data (refer to ioctl
function TPMC851_C_ADC_SEQREAD).

TPMC851-SW-82 — Linux Device Driver Page 18 of 55

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tpmc851.h”

int fd;

int result;

TPMC851 ADC SEQSTART BUF adcSegStartBuf;
/*

** Start sequencer with a buffer of 100 word and a cycle time of 100 ms,

** do not use external trigger

*/

adcSeqgStartBuf.cycTime = 1000;
adcSeqgStartBuf.flags = 0;
adcSeqgStartBuf.bufSize = 100;

printf ("Start ADC Sequencer ... ");
result = ioctl(fd,
TPMC851 C_ADC_ SEQSTART,
&adcSegStartBuf) ;
if (result >= 1)
{
printf ("OK\n") ;

else
{
/* process ioctl error */
}
ERRORS
Error Code Description
EBUSY The ADC sequencer is currently running
EINVAL Specified gain level or flags are invalid
ENOMEM No memory is available to allocate the internal buffer

TPMC851-SW-82 — Linux Device Driver Page 19 of 55

TEWS <

TECHNOLOGIES

3.3.4 TPMC851_IOC_ADC_SEQSTOP

NAME

TPMC851_|0C_ADC_SEQSTOP — Stop ADC sequencer

DESCRIPTION

This function stops the ADC sequencer. All sequencer channel configurations are still valid after
stopping.

EXAMPLE

#include “tpmc851.h”

int fd;

int result;

/*

** Stop the sequencer

*/

printf ("Stop ADC Sequencer ... ");

result = ioctl(fd,
TPMC851 IOC ADC SEQSTOP,
NULL) ;

if (result >= 1)

printf ("OK\n") ;

else
{
/* process ioctl error */
}
ERRORS
Error Code Description
EACCES The ADC sequencer is not running

TPMC851-SW-82 — Linux Device Driver Page 20 of 55

TEWS <

TECHNOLOGIES

3.3.5 TPMC851_IOC_ADC_SEQREAD

NAME

TPMC851_|0C_ADC_SEQREAD - Read values from ADC sequencer buffer

DESCRIPTION

This function reads values from the internal ADC sequencer buffer.

A pointer to the read structure (TPMC851_ADC _SEQREAD _ BUF) is passed by the parameter arg to

the driver.
typedef struct
{
long seqState;
short buffer[32];
} TPMC851_ADC_SEQREAD_BUF;
seqState
Displays the sequencer state. This is an ored value of the following status flags.
Flag Description
TPMC851_SF_SEQACTIVE If set the ADC sequencer is started.
If not set, the ADC sequencer stopped.
TPMC851_SF_SEQOVERFLOWERR If set the ADC sequencer has detected an
overflow error. (Hardware detected)
TPMC851_SF_SEQTIMERERROR If set the ADC sequencer has detected a
timer error. (Hardware detected)
TPMC851_SF_SEQIRAMERROR If set the ADC sequencer has detected an
instruction RAM error. (Hardware detected)
TPMC851_SF_SEQFIFOOVERFLOW If set the internal FIFO (buffer) has overrun.

Data got lost.

buffer

This array contains data from the activated channels. Only the previously selected channels
contain valid data. Array index 0 contains values from channel 1, array index 1 corresponds to
channel 2 and so on.

TPMC851-SW-82 — Linux Device Driver Page 21 of 55

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tpmc851.h”

int fd;
int result;
TPMC851 ADC SEQREAD BUF adcSegReadBuf;

/*
** Read values from internal sequencer buffer (1000 times)
** assuming that channel 1 and 3 are enabled.
*/
for (cycle=0; cycle<1l000; cycle++)
{
result = ioctl (fd,
TPMC851 IOC_ADC SEQREAD,
(char*) &adcSegReadBuf) ;
if (result >= 1)
{
printf (" Channel (1) =%d Channel (3)=%d \n”,
adcSegReadBuf.buffer[0],
adcSegReadBuf.buffer[2]);
}
if (result == ENODATA)
{

/* walt a short time for new data to arrive */

ERRORS
Error Code Description
EACCES The ADC sequencer is not running
ENODATA No data is available inside the internal buffer

TPMC851-SW-82 — Linux Device Driver Page 22 of 55

TEWS <

TECHNOLOGIES

3.3.6 TPMC851_IOC_DAC_WRITE

NAME

TPMC851_|IOC_DAC_WRITE — Write value to DAC channel

DESCRIPTION

This function writes a value to the DAC register.

The DAC sequencer must be stopped for single DAC writes.

A pointer to the write structure (TPMC851_DAC _WRITE BUF) is passed by the parameter arg to the
driver.

typedef struct

{
int channel;
unsigned long flags;
short dacValue;

} TPMC851_DAC_WRITE_BUF;

channel
Specifies the DAC channel number. Valid values are 1..8.

flags
Is an ORed value of the following flags:
Flag Description
TPMC851_F CORR If set the function will correct the dacValue before writing

to DAC channel. Factory set and module dependent
correction data is used for correction.

If not set, dacValue is written to the DAC channel.
TPMC851_F NOUPDATE If set the DACs will not update after changing the DAC

value. The output voltage will change with the next write
with unset TPMC851_F_NOUPDATE flag.

If not set the DAC will immmediately convert and output the
new voltage.

dacValue
This value is written to the DAC channel.

TPMC851-SW-82 — Linux Device Driver Page 23 of 55

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tpmc851.h”

int £d;
int result;
TPMC851 DAC WRITE BUF dacWriteBuf;

/*

** Write uncorrected 0x4000 to DAC channel 5, immediate convert
*/

dacWriteBuf.channel = 5;

dacWriteBuf.flags = 0;

dacWriteBuf.dacValue = 0x4000;

printf ("Write to DAC ... ");
result = ioctl(fd,
TPMC851 IOC DAC WRITE,
(char*) &dacWriteBuf) ;
if (result >= 1)
{
printf ("OK\n") ;

else
{
/* process ioctl error */
}
ERRORS
Error Code Description
EBUSY The DAC sequencer is currently running
ECHRNG Specified channel is invalid
EINVAL Specified gain level is invalid

TPMC851-SW-82 — Linux Device Driver Page 24 of 55

TEWS <

TECHNOLOGIES

3.3.7 TPMC851_IOC_DAC_SEQCONFIG

NAME

TPMC851_I0C_DAC_SEQCONFIG — Configure DAC sequencer channel

DESCRIPTION

This function enables and configures, or disables a DAC channel for sequence use.

The DAC sequencer must be stopped to execute this function.

A pointer to the configuration structure (TPMC851 DAC SEQCONFIG_BUF) is passed by the
parameter arg to the driver.

typedef struct

{
int channel;
int enable;
unsigned long flags;

} TPMC851_DAC_SEQCONFIG_BUF;

channel
Specifies the DAC channel number to configure. Valid values are 1..8.

enable

Specifies if the channel shall be used in sequencer mode or not. (0 disables the channel, any
other value will enable the channel)

flags
Is an ored value of the following flags:
Flag Description
TPMC851_F_CORR If set the function will correct the dacValue before writing to

DAC channel. Factory set and module dependent
correction data is used for correction.

If not set, dacValue is written to the DAC channel.

TPMC851-SW-82 — Linux Device Driver Page 25 of 55

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tpmc851.h”

int fd;
int result;
TPMC851 DAC SEQCONFIG BUF dacSeqConfBuf;

/*
** Configure DAC channel 1, using corrected data

** when the sequencer is running

*/

dacSeqConfBuf.channel =1;
dacSeqConfBuf.enable = TRUE;
dacSeqConfBuf.flags = TPMC851 F CORR;

printf ("Configure channel for Sequencer ... ");
result = ioctl(fd,
TPMC851 IOC DAC SEQCONFIG,
(char*) &dacSeqConfBuf) ;
if (result >= 1)
{
printf ("OK\n") ;

else
{
/* process ioctl error */
}
ERRORS
Error Code Description
EBUSY The DAC sequencer is currently running
ECHRNG Specified channel is invalid
EINVAL Specified gain level is invalid

TPMC851-SW-82 — Linux Device Driver Page 26 of 55

TEWS <

TECHNOLOGIES

3.3.8 TPMC851_IOC_DAC_SEQSTART

NAME

TPMC851_I0C_DAC_SEQSTART — Start DAC sequencer

DESCRIPTION

This function configures the DAC sequencer time and starts the DAC sequencer.

A pointer to the start structure (TPMC851_DAC _SEQSTART_BUF) is passed by the parameter arg to

the driver.

typedef struct

{
unsigned short cycTime;
unsigned long flags;
long bufSize;
short *buffer;

} TPMC851_DAC_SEQSTART_BUF;

cycTime

Specifies the DAC sequencer cycle time. The sequencer time is specified in 100us steps. With
a value of 0, the “Sequencer Continuous Mode” is selected.

flags
Is an ORed value of the following flags:

Flag Description

TPMC851_F EXTTRIGSRC If set the DAC sequencer is trigger with digital 1/0
line 1.
If not set, the DAC sequencer uses the DAC cycle
counter.

TPMC851_F _EXTTRIGOUT If set the DAC trigger is used as output on digital 1/0
line 1.

TPMC851_F DACSEQREPEAT If set the DAC will repeat data when the end of the
buffer is reached, the

TPMC851_SF_SEQFIFOUNDERFLOW error will
be suppressed.

TPMC851_F _EXTTRIGSRC and TPMC851_F _EXTTRIGOUT cannot be used at the same
time.

bufSize

This value specifies the size of the DAC sequencer FIFO. The value is specified in number of
data words.

TPMC851-SW-82 — Linux Device Driver Page 27 of 55

TEWS <

TECHNOLOGIES

buffer

Pointer to a buffer of short values used for initial DAC sequencer data.

The DAC data is stored by the application into this buffer and copied to the drivers FIFO. The
assignment from data to channel is done as follows. The first data will be used for the lowest
enabled channel, the second from the next enabled channel and so on. There will be no data
used for disabled channels. If the end of buffer is reached the next data will be read again from
the beginning of the buffer.

Example:
Enabled channels: 1, 2, 5
Buffer size: 10
The table shows the index the data is used to for channel and cycle.
Sequencer Channel 1 Channel 2 Channel 3
Cycle
1% 0 1 2
2™ 3 4 5
3 6 7 8
4" 9 0 1
5th 2 3 4
EXAMPLE
#include “tpmc851.h”
int fd;
int result;
TPMC851 DAC_ SEQSTART BUF dacSegStartBuf;
short buffer[10007];

/*

** Start sequencer with a buffer of 100 word and a cycle time of 100 ms,
** do not use external trigger

*/

/* Fill buffer */

buffer[0] s

buffer[1] s

buffer[2] et

dacSeqgStartBuf.cycTime = 1000;
dacSeqgStartBuf.flags = TPMC851 F DACSEQREPEAT;
dacSeqgStartBuf.bufSize = 1000;
dacSeqgStartBuf.buffer = buffer;

TPMC851-SW-82 — Linux Device Driver Page 28 of 55

TEWS <

TECHNOLOGIES

printf ("Start DAC Sequencer ... ");
result = ioctl(fd,
TPMC851 IOC DAC SEQSTART,

(char*) &dacSegStartBuf) ;
if (result >= 1)

printf ("OK\n") ;

else
{
/* process ioctl error */
}
ERRORS
Error Code Description
EBUSY The DAC sequencer is already running
EINVAL Specified flags are invalid
ENOMEM No memory is available to allocate the internal buffer

TPMC851-SW-82 — Linux Device Driver

Page 29 of 55

TEWS <

TECHNOLOGIES

3.3.9 TPMC851_IOC_DAC_SEQSTOP

NAME

TPMC851_I0C_DAC_SEQSTOP - Stop DAC sequencer

DESCRIPTION

This function stops the DAC sequencer. All sequencer channel configurations are still valid after
stopping.

EXAMPLE

#include “tpmc851.h”

int fd;

int result;

/*

** Stop the sequencer

*/

printf ("Stop DAC Sequencer ... ");

result = ioctl(fd,
TPMC851 IOC DAC SEQSTOP,
NULL) ;

if (result >= 1)

printf ("OK\n") ;

else
{
/* process ioctl error */
}
ERRORS
Error Code Description
EACCES The DAC sequencer is not running

TPMC851-SW-82 — Linux Device Driver Page 30 of 55

TEWS <

TECHNOLOGIES

3.3.10 TPMC851_IOC_DAC_SEQWRITE

NAME

TPMC851_|0C_DAC_SEQWRITE — Write values to DAC sequencer buffer

DESCRIPTION

This function writes values to the internal DAC sequencer buffer.

A pointer to the write structure (TPMC851_DAC _SEQWRITE_BUF) is passed by the parameter arg to

the driver.

typedef struct

{
long bufSize;
short *buffer;

} TPMC851_DAC_SEQWRITE_BUF;

bufSize

This value specifies the size of the data buffer. The driver will only accept buffer sizes smaller or
equal to the free number of element in the drivers FIFO. The number of free elements can be
read with TPMC851_IOC_DAC_SEQSTATE.

buffer

This pointer points the buffer containing the new DAC data values for the activated channels.
The data is supplied in the way as described in TPMC851_IOC_DAC_SEQSTART.

EXAMPLE

#include “tpmc851.h”

int fd;

int result;
TPMC851 DAC SEQWRITE BUF dacSegWriteBuf;
short buffer[100];
/*

** Fill up 100 data values

*/

/* fill first cycle */

buffer[0] = ..;

buffer([l] = ..;

buffer[2] = ..;

TPMC851-SW-82 — Linux Device Driver Page 31 of 55

TEWS <

TECHNOLOGIES

dacSeqWriteBuf.bufSize
dacSeqWriteBuf.buffer
result = ioctl(fd,
TPMC851 IOC DAC SEQWRITE,
(char*) &dacSegWriteBuf) ;

100;
buffer;

if (result >= 1)

/* OK, FIFO filled up */

/* Fillung up failed */

ERRORS
Error Code Description
EACCES The DAC sequencer is not running
EINVAL Invalid buffer size specified
EFAULT Additional: There is not enough space in FIFO to copy the supplied data

buffer

TPMC851-SW-82 — Linux Device Driver

Page 32 of 55

3.3.1

NAME

TEWS <

TECHNOLOGIES

TPMC851_IOC_DAC_SEQSTATE

TPMC851_I0C_DAC_SEQSTATE — Get DAC sequencer and information

DESCRIPTION

This function reads the state and number of free elements of the DAC sequencer.

A pointer to the state structure (TPMC851_DAC _SEQSTATE BUF) is passed by the parameter arg to

the driver.

typedef struct
{

unsigned long state;
short freeElems;
} TPMC851_DAC_SEQSTATE_BUF;

state

This value returns the actual state of the DAC sequencer. The following flags can be ored in the

value:
Flag
TPMC851_SF_SEQACTIVE

TPMC851_SF_SEQUNDERFLOWERR

TPMC851_SF_SEQFIFOUNDERFLOW

freeElems

Description
If set the DAC sequencer is started.
If not set, the DAC sequencer stopped.

If set the DAC sequencer has detected an
underrun error. (Hardware detected)

If set the application supplied FIFO (buffer) is
empty and the sequencer could not write new
data.

This value returns the number of free data elements in the DAC sequencer FIFO.

EXAMPLE

#include “tpmc851.h”

int fd;
int result;
TPMC85 l_DAC_SEQSTATE_BUF

TPMC851-SW-82 — Linux Device Driver

dacSegStatBuf;

Page 33 of 55

TEWS <

TECHNOLOGIES

/*

** read DAC sequencer state
*/

result = ioctl(fd,

TPMC851 IOC DAC SEQSTATE,
(char*) &dacSegStatBuf) ;
if (result >= 1)
{
/* OK */
printf (“State: %Xh, free: %d\n”,
dacSegStatBuf.state,
dacSegStatBuf.freeElems) ;

else

/* Failed */

TPMC851-SW-82 — Linux Device Driver

Page 34 of 55

TEWS <

TECHNOLOGIES

3.3.12 TPMC851_IOC_IO_READ

NAME

TPMC851_|OC_IO_READ — Read from digital I/0

DESCRIPTION

This function reads the current value of the digital 1/0 input. Only bits previously configured to input
are valid.

A pointer to the read structure (TPMC851_IO_BUF) is passed by the parameter arg to the driver.

typedef struct
{

unsigned short value;
} TPMC851_10_BUF;

value
Returns the current digital 1/0 input value.

EXAMPLE

#include “tpmc851.h”

int £d;
int result;
TPMC851 IO BUF ioBuf;

/* Read I/0 input value */
printf ("Read I/0 input value ... ");
result = ioctl(fd,
TPMC851 IOC_ IO READ,
(char*) &ioBuf) ;
if (result >= 1)

printf (" I/0 input: %$04X", ioBuf.value);

/* process ioctl error */

TPMC851-SW-82 — Linux Device Driver Page 35 of 55

TEWS <

TECHNOLOGIES

3.313 TPMC851_IOC_IO_WRITE

NAME

TPMC851_IOC_IO_WRITE — Write to digital /O

DESCRIPTION

This function writes a value to the digital /0O output. Only bits previously configured to output are valid.
A pointer to the write structure (TPMC851_IO_BUF) is passed by the parameter arg to the driver.

typedef struct
{

unsigned short value;
} TPMC851_IO_BUF;

value
Specifies the new digital 1/0 output value.

EXAMPLE

#include “tpmc851.h”

int £d;
int result;
TPMC851 IO BUF ioBuf;

/* Write 0x1234 to I/O output */

ioBuf.value = 0x1234;

printf ("Write I/O output value ... ");

result = ioctl(fd,
TPMC851 IOC IO WRITE,
(char*) &ioBuf) ;

if (result >= 1)

printf ("OK\n) ;

/* process ioctl error */

TPMC851-SW-82 — Linux Device Driver Page 36 of 55

TEWS <

TECHNOLOGIES

3.3.14 TPMC851_IOC_IO_EVENTWAIT

NAME

TPMC851_IOC_IO_EVENTWAIT — Wait for digital I/O event

DESCRIPTION

This function waits for an I/O input event.

A pointer to the event structure (TPMC851_I0_EVENTWAIT_BUF) is passed by the parameter arg to
the driver.

typedef struct

{
int ioLine;
unsigned long flags;
long timeout;

} TPMC851_I0_EVENTWAIT_BUF;
ioLine
Specifies the digital 1/0 line where the event shall occur. Valid values are 0..15.

flags
Specifies the event that shall occur. This is an ORed value of the following flags:
Flag Description
TPMC851_F_HI2LOTRANS If set, the function will return after a high to low transition
occurs.
TPMC851_F LO2HITRANS If set, the function will return after a low to high transition
occurs.

At least one flag must be specified.

timeout

Specifies the maximum time the function will wait for the specified event. The time is specified in
ticks. Specify 0 to wait indefinitely for the given event.

TPMC851-SW-82 — Linux Device Driver Page 37 of 55

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tpmc851.h”

int fa;

int result;

TPMC851 IO EVENTWAIT BUF waitBuf;

/*

** Wait for a transition on I/O line 12 (max wait 10000 ticks)
*/

waitBuf.iolLine = 12;

waitBuf.flags = TPMC851 F HI2LOTRANS | TPMC851 F LO2HITRANS;
waitBuf.timeout = 10000;

printf ("Wait for an I/O event ... ");
result = ioctl(fd,
TPMC851 IOC IO EVENTWAIT,
(char*) &waitBuf) ;
if (result >= 1)
{
printf ("OK\n) ;

else
{
/* process ioctl error */
}
ERRORS
Error Code Description
ENOSPC No space is available for new wait requests
ETIMEDOUT The timer expired

TPMC851-SW-82 — Linux Device Driver Page 38 of 55

TEWS <

TECHNOLOGIES

3.3.15 TPMC851_IOC_IO_CONFIG

NAME

TPMC851_IOC_IO_CONFIG - Configure digital /O direction

DESCRIPTION

This function configures digital I/O lines to input or output (direction).

A pointer to the configure structure (TPMC851_I0_CONF _BUF) is passed by the parameter arg to the
driver.

typedef struct
{

unsigned short direction;
} TPMC851_IO_CONF_BUF;

direction

Specifies the new direction for digital 1/0. A bit set to 1 enables output, a 0 means that the 1/0O
line is input.

EXAMPLE

#include “tpmc851.h”

int fd;
int result;
TPMC851 IO CONF_ BUF ioConfBuf;

/* Enable line 0,2,8,9 for output, all other lines are input */
ioConfBuf.direction = (1 << 0) | (1 << 2) | (1 << 8) | (1 << 9);
printf ("Set new I/0O configuration ... ");
result = ioctl(fd,

TPMC851 IOC_ IO CONFIG,

(char*) &ioConfBuf) ;
if (result >= 1)

printf ("OK\n) ;

/* process ioctl error */

TPMC851-SW-82 — Linux Device Driver Page 39 of 55

TEWS <

TECHNOLOGIES

3.3.16 TPMC851_IOC_IO_DEBCONFIG

NAME

TPMC851_IO0C_IO_DEBCONFIG — Configure digital input debouncer

DESCRIPTION

This function configures the digital I/O debouncing circuit.

A pointer to the configure structure (TPMC851_I0_DEBCONF_BUF) is passed by the parameter arg
to the driver.

typedef struct

{
unsigned short enableMask;
unsigned short debTime;

} TPMC851_10_DEBCONF_BUF;

enableMask

Specifies digital 1/0 lines which shall observed by the debouncer. A bit set to 1 enables the
debouncer, and a 0 disables the debouncer for the adequate /O line.

debTime
Specifies the debounce time. The time is specified in 100ns steps.

EXAMPLE

#include “tpmc851.h”

int fd;
int result;
TPMCSSl_IO_DEBCONF_BUF ioDebConfBuf;

/*

** Enable Debouncer for line 0 and 2 (debounce time 1ms)
*/

ioDebConfBuf.enableMask = (1 << 0) | (1 << 2);
ioDebConfBuf.debTime = 10000;

TPMC851-SW-82 — Linux Device Driver Page 40 of 55

TEWS <

TECHNOLOGIES

printf ("Set debouncer configuration ... ");
result = ioctl(fd,
TPMC851 IOC_ IO DEBCONFIG,

(char*) &ioDebConfBuf) ;
if (result >= 1)

{
printf ("OK\n) ;

/* process ioctl error */

TPMC851-SW-82 — Linux Device Driver Page 41 of 55

TEWS <

TECHNOLOGIES

3.3.17 TPMC851_IOC_CNT_READ

NAME

TPMC851_IOC_CNT_READ — Read value from counter/timer

DESCRIPTION

This function reads the current value of the counter/timer.

A pointer to the read structure (TPMC851_CNT_READ_ BUF) is passed by the parameter arg to the

driver.

typedef struct

{
unsigned long count;
unsigned long state;

} TPMC851_CNT_READ_BUF;

count
Returns the current counter value.

state

Returns the counter state. If possible the flags are cleared after read. This is an ORed value of
the following flags.

Flag Description
TPMC851_SF_CNTBORROW Counter borrow bit set (actual state)
TPMC851_SF_CNTCARRY Counter carry bit set (actual state)
TPMC851_SF_CNTMATCH Counter match event has occurred since last
read.
TPMC851_SF_CNTSIGN Counter sign bit (actual state)
TPMC851_SF_CNTDIRECTION If set, counter direction is upward.
If not set, counter direction is downward.
TPMC851_SF_CNTLATCH Counter value has been latched.
TPMC851_SF_CNTLATCHOVERFLOW Counter latch overflow has occurred.
TPMC851_SF_CNTSNGLCYC Counter Single Cycle is active

TPMC851-SW-82 — Linux Device Driver Page 42 of 55

TEWS <

TECHNOLOGIES

EXAMPLE

#include “tpmc851.h”

int £d;
int result;
TPMC851 CNT READ BUF cntBuf;

/* Read counter value */
printf ("Read counter ... ");
result = ioctl(fd,

TPMC851 IOC CNT READ,
(char*) &cntBuf) ;

if (result >= 1)

{
printf (" Counter: %1d",
printf (" State: $1Xh'",

else

/* process ioctl error */

cntBuf.counter) ;

cntBuf.state) ;

TPMC851-SW-82 — Linux Device Driver

Page 43 of 55

TEWS <

TECHNOLOGIES

3.3.18 TPMC851_IOC_CNT_MATCHWAIT

NAME

TPMC851_IOC_CNT_MATCHWAIT — Wait for counter match event

DESCRIPTION

This function waits for a counter match event. This event occurs if the current timer/counter value
matches the previously setup counter-match-register.

A pointer to the wait structure (TPMC851_CNT_WAIT_BUF) is passed by the parameter arg to the
driver.

typedef struct
{

long timeout;
} TPMC851_CNT_WAIT_BUF;

timeout

Specifies the maximum time the function will wait for the match event. The time is specified in
ticks. Specify 0 to wait indefinitely for the given event.

EXAMPLE

#include “tpmc851.h”

int £d;

int result;

TPMC851 CNT WAIT BUF cntWaitBuf;

/*

** Wait for counter match event (max wait 10000 ticks)
*/

cntWaitBuf.timeout = 10000;

TPMC851-SW-82 — Linux Device Driver Page 44 of 55

TEWS <

TECHNOLOGIES

printf ("Wait for counter match event ... ");
ioctl (fd,
TPMC851 IOC CNT MATCHWAIT,
(char*) &cntWaitBuf) ;

result

if (result >= 1)

printf ("OK\n) ;

/* process ioctl error */

ERRORS
Error Code Description
ENOSPC No space is available for new wait requests
ETIMEDOUT The timer expired

TPMC851-SW-82 — Linux Device Driver Page 45 of 55

TEWS <

TECHNOLOGIES

3.3.19 TPMC851_IOC_CNT_CTRLWAIT

NAME

TPMC851_IOC_CNT_CTRLWAIT — Wait for counter control event

DESCRIPTION

This function waits for a counter control event. The event to wait for is chosen with ioctl() function
TPMC851_I0C_CNT_CONFIG specifying the parameter controlMode.

A pointer to the wait structure (TPMC851_CNT_WAIT_BUF) is passed by the parameter arg to the
driver.

typedef struct
{

long timeout;
} TPMC851_CNT_WAIT_BUF;

timeout

Specifies the maximum time the function will wait for the match event. The time is specified in
ticks. Specify 0 to wait indefinitely for the given event.

EXAMPLE

#include “tpmc851.h”

int fd;

int result;

TPMC851 CNT WAIT BUF cntWaitBuf;

/*

** Wait for counter control event (max wait 10000 ticks)
*/

cntWaitBuf.timeout = 10000;

TPMC851-SW-82 — Linux Device Driver Page 46 of 55

TEWS <

TECHNOLOGIES

printf ("Wait for counter control event ... ");
ioctl (fd,
TPMC851 IOC CNT CTRLWAIT,
(char*) &cntWaitBuf) ;

result

if (result >= 1)

printf ("OK\n) ;

/* process ioctl error */

ERRORS
Error Code Description
ENOSPC No space is available for new wait requests
ETIMEDOUT The timer expired

TPMC851-SW-82 — Linux Device Driver Page 47 of 55

TEWS <

TECHNOLOGIES

3.3.20 TPMC851_IOC_CNT_CONFIG

NAME

TPMC851_IOC_CNT_CONFIG — Configure counter

DESCRIPTION

This function configures the counter.

A pointer to the configuration structure (TPMC851_CNT_CONFIG_BUF) is passed by the parameter
arg to the driver.

typedef struct

{
unsigned long inputMode;
int clockDivider;
unsigned long countMode;
unsigned long controlMode;
unsigned long invFlags;

} TPMC851_CNT_CONFIG_BUF;

inputMode
Specifies the counter input mode. The following modes are defined and valid:

Flag Description
TPMC851_M_CNTIN_DISABLE Counter disabled
TPMC851_M_CNTIN_TIMERUP Timer Mode Up
TPMC851_M_CNTIN_TIMERDOWN Timer Mode Down
TPMC851_M_CNTIN_DIRCOUNT Direction Count
TPMC851_M_CNTIN_UPDOWNCOUNT Up/Down Count
TPMC851_M_CNTIN_QUAD1X Quadrature Count 1x
TPMC851_M_CNTIN_QUAD2X Quadrature Count 2x
TPMC851_M_CNTIN_QUAD4X Quadrature Count 4x

clockDivider

Specifies the clock divider value. Allowed clock divider values are 1 (40MHz), 2 (20MHz), 4
(10MHz) and 8 (5MHz).

countMode
Specifies the count mode. The following modes are defined and valid:
Flag Description
TPMC851_M_CNT_CYCLE Cycling Counter
TPMC851_M_CNT_DIVN Divide-by-N
TPMC851_M_CNT_SINGLE Single Cycle

TPMC851-SW-82 — Linux Device Driver Page 48 of 55

TEWS <

TECHNOLOGIES

controlMode

Specifies the counter control mode. These events can generate counter control events. The
following modes are defined and valid:

Flag Description
TPMC851_M_CNTCTRL_NONE No Control Mode
TPMC851_M_CNTCTRL_LOAD Load Mode
TPMC851_M_CNTCTRL_LATCH Latch Mode
TPMC851_M_CNTCTRL_GATE Gate Mode
TPMC851_M_CNTCTRL_RESET Reset Mode
invFlags
Specifies if counter input lines shall be inverted or not. This is an ored value of the following
flags:
Flag Description
TPMC851_F_CNTINVINP2 If set, input line 2 is low active
If not set, input line 2 is high active
TPMC851_F_CNTINVINP3 If set, input line 3 is low active
If not set, input line 3 is high active
TPMC851_F_CNTINVINP4 If set, input line 4 is low active
If not set, input line 4 is high active
EXAMPLE

#include “tpmc851.h”

int fd;

int result;
TPMC851_CNT_CONFIG_BUF cntConfBuf;
/*

** Setup counter for direction count, clock divider 1, cycling count,

** no control mode and all line high active

*/

cntConfBuf. inputMode = TPMC851 M CNTIN DIRCOUNT;
cntConfBuf. clockDivider = 1;

cntConfBuf. countMode = TPMC851 M CNT CYCLE;
cntConfBuf. controlMode = TPMC851 M CNTCTRL_NONE;
cntConfBuf. invFlags = 0;

TPMC851-SW-82 — Linux Device Driver Page 49 of 55

TEWS <

TECHNOLOGIES

printf ("Set counter configuration ... ");
result = ioctl(fd,

TPMC851 IOC_CNT CONFIG,
(char*) &cntConfBuf) ;
if (result >= 1)

printf ("OK\n") ;

/* process ioctl error */

ERRORS
Error Code Description
EINVAL Specified flag or mode is invalid.

TPMC851-SW-82 — Linux Device Driver Page 50 of 55

TEWS <

TECHNOLOGIES

3.3.21 TPMC851_IOC_CNT_RESET

NAME

TPMC851 IOC_CNT_RESET — Reset counter value

DESCRIPTION

This function resets the counter value to 0x00000000.

EXAMPLE

#include “tpmc851.h”

int £d;

int result;

/* Reset counter */

printf ("Reset counter ... ");

result = ioctl(fd,
TPMC851 IOC CNT RESET,
NULL) ;

if (result >= 1)

printf ("OK\n") ;

/* process ioctl error */

TPMC851-SW-82 — Linux Device Driver Page 51 of 55

TEWS <

TECHNOLOGIES

3.3.22 TPMC851_IOC_CNT_SETPRELD

NAME

TPMC851_IOC_CNT_SETPRELD — Set counter preload value

DESCRIPTION

This function sets the counter preload register.

A pointer to the preload structure (TPMC851_CNT_SETPRELD_ BUF) is passed by the parameter arg
to the driver.

typedef struct

{
unsigned long value;
unsigned long flags;

} TPMC851_CNT_SETPRELD_BUF;

value
Specifies the new counter preload value.

flags
Is an ORed value of the following flags:
Flag Description
TPMC851_F _IMMPRELOAD If set, the function will immediate load the preload value
into the counter
If not set, preload value will be used for the next
preload condition.
EXAMPLE

#include “tpmc851.h”

int £d;
int result;
TPMC851 CNT SETPRELD BUF cntPrldBuf;

TPMC851-SW-82 — Linux Device Driver Page 52 of 55

TEWS <

TECHNOLOGIES

/*

** Immediately load 0x11223344 into the counter and preload
*/

cntPrldBuf.value = 0x11223344;

cntPrldBuf.flags = TPMC851_F_IMMPRELOAD;

printf ("Set preload value ... ");
result = ioctl(fd,
TPMC851 IOC CNT SETPRELD,
(char*) &cntPrldBuf) ;
if (result >= 1)
{
printf ("OK\n") ;

/* process ioctl error */

register

TPMC851-SW-82 — Linux Device Driver

Page 53 of 55

TEWS <

TECHNOLOGIES

3.3.23 TPMC851_IOC_CNT_SETMATCH

NAME

TPMC851_IOC_CNT_SETMATCH — Set counter match value

DESCRIPTION

This function sets the counter match register. If counter and match value are the same, a match event
occurs. The driver can wait for this event (refer to ioctl function TPMC851_IOC_CNT_MATCHWAIT).

A pointer to the match structure (TPMC851_CNT_SETMATCH_BUF) is passed by the parameter arg
to the driver.

typedef struct
{

unsigned long value;
} TPMC851_CNT_SETMATCH_BUF;

value
Specifies the new counter match value.

EXAMPLE

#include “tpmc851.h”

int £d;
int result;
TPMC851_CNT_SETMATCH_BUF cntMatchBuf;

/* Set match value to 0x10000 */

cntMatchBuf.value = 0x10000;
printf ("Set counter match value ... ");
result = ioctl(fd,

TPMC851_IOC_CNT_SETMATCH,
(char*) &cntMatchBuf) ;
if (result >= 1)

printf ("OK\n") ;

/* process ioctl error */

TPMC851-SW-82 — Linux Device Driver Page 54 of 55

TEWS <

TECHNOLOGIES

4 Diagnostic

If the TPMC851 does not work properly it is helpful to get some status information from the driver
respective kernel.

Check TPMC851 PCI information with Ispci, which displays the PCI location of the TPMC851 and its
addresses.

lspci -v

04:01.0 Signal processing controller: TEWS Technologies GmbH Device 0353
Subsystem: TEWS Technologies GmbH Device 000a
Flags: medium devsel, IRQ 16
Memory at feb9fc00 (32-bit, non-prefetchable) [size=128]
I/0 ports at €880 [size=128]

Memory at feb9f800 (32-bit, non-prefetchable) [size=512]
Memory at feb9f400 (32-bit, non-prefetchable) [size=64]
Memory at feb9f000 (32-bit, non-prefetchable) [size=64]
Kernel driver in use: TEWS TECHNOLOGIES TPMC851 AD-DA-Converter,

Digital IO and Counter

Kernel modules: tpmc851drv

The Linux /proc file system provides information about kernel, resources, driver, devices and so on.
The following screen dumps displays information of a correct running TPMC851 driver (see also the
proc man pages).

cat /proc/devices

Character devices:

1 mem

2 pty

162 raw
254 tpmc851drv

cat /proc/iomem

80000000-£f£f£f£f£f£fff : PCI Bus 0000:00
feb00000-febfffff : PCI Bus 0000:04
feb9f000-feb9£f03f : 0000:04:01.0
feb9f000-feb9£f03f : TPMC851
feb9f400-feb9£f43f : 0000:04:01.0
feb9f400-feb9£f43f : TPMC851
feb9f800-feb9£f9ff : 0000:04:01.0
feb9f800-feb9£f9ff : TPMC851
feb9fc00-feb9fc7f : 0000:04:01.0

TPMC851-SW-82 — Linux Device Driver Page 55 of 55

