
The Embedded I/O Company

TPMC861-SW-82
Linux Device Driver

4 Channel Isolated Serial Interface
RS422/RS485
Version 1.4.x

User Manual
Issue 1.4.0
August 2013

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany

Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com www.tews.com

TPMC861-SW-82 - Linux Device Driver Page 2 of 20

TPMC861-SW-82
Linux Device Driver

4 Channel Isolated Serial Interface

RS422/RS485

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2001-2013 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0 First Issue September 2001
1.1 General Revision March 2004
1.2.0 Kernel 2.6.x Support May 2, 2005
1.2.1 depmod for driver installation added October 13, 2005
1.3.0 ELinOS makefiles removed from file list, UDEV support

added, ChangeLog.txt added to file list
August 16, 2006

1.3.1 File list modified, general revision May 27, 2008
1.3.2 New top level Makefile and diagnostic info for kernel 2.6 August 6, 2010
1.3.3 File list changed December 22, 2011
1.4.0 New functions configuring user baudrate and reading actual

configured baudrate
August 12, 2013

TPMC861-SW-82 - Linux Device Driver Page 3 of 20

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

Build and install the Device Driver..62.1
Uninstall the Device Driver ..62.2
Install Device Driver into the running Kernel...62.3
Remove Device Driver from the running Kernel..72.4
Change Major Device Number ...72.5
FIFO Configuration ...82.6
Configuration hints ...82.7

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 9
open..93.1
close ...113.2
ioctl ...123.3
3.3.1 TPMC861_IOCQ_BIST ..14
3.3.2 TPMC861_IOCT_SPEED...17
3.3.3 TPMC861_IOCQ_GET_SPEED...18

4 DEVICE DRIVER PROGRAMMING ... 19
Setting up Baud Rates..194.1

5 DIAGNOSTIC.. 20

TPMC861-SW-82 - Linux Device Driver Page 4 of 20

1 Introduction
The TPMC861 Linux device driver is a full-duplex serial driver which allows the operation of a
TPMC861 serial PMC on Linux operating systems.

The TPMC861 device driver is based on the standard Linux serial device driver and supports all
standard terminal functions (TERMIOS).

The TPMC861 device driver includes the following features:

Extended baud rates up to 460800 Baud
Each channel has a 128 byte transmit and receive FIFO
Programmable trigger level for transmit and receive FIFO
Hardware (RTS/CTS) and software flow control (XON/XOFF) direct controlled by the serial
controller. The advantage of this feature is that the transmission of characters will immediately
stop as soon as a complete character is transmitted and not when the transmit FIFO is empty
for handshake under software control. This will greatly improve flow control reliability.
Direct support of different physical interfaces (RS-422, RS-485 half-duplex and full-duplex)
Designed as Linux kernel module with dynamically loading
Supports shared IRQ’s
Build on new style PCI driver layout
Creates a TTY device ttyTPMC861 with dynamically allocated or fixed major device numbers.
DEVFS and UDEV support for automatic device node creation
IOCTL function for a Built-In-Self-Test

The TPMC861-SW-82 device driver supports the modules listed below:

TPMC861-10 4 Channel Isolated Serial Interface
RS422/RS485

(PMC)

To get more information about the features and use of TPMC861 device it is recommended to read
the manuals listed below.

TPMC861 User manual
TPMC861 Engineering Manual
XR16C864 UART Hardware Manual

TPMC861-SW-82 - Linux Device Driver Page 5 of 20

2 Installation
The directory TPMC861-SW-82 on the distribution media contains the following files:

TPMC861-SW-82-1.4.0.pdf This manual in PDF format
TPMC861-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
Release.txt Release information
ChangeLog.txt Release history

The GZIP compressed archive TPMC861-SW-82-SRC.tar.gz contains the following files and
directories:

example/Makefile Example application makefile
example/tpmc861example.c Send and receive example application
example/tpmc861setspeed.c Speed configuration example application
example/tpmc861bist.c Example for using Built-In-Self-Test
hal/ Hardware abstraction layer driver needed for all kernel versions
hal/Makefile HAL driver makefile
hal/tpmc861hal.c HAL driver source file
hal/tpmc861haldef.h HAL driver private header file
include/config.h Driver independent library header file
include/tpmodule.h Driver and kernel independent library header file
include/tpmodule.c Driver and kernel independent library source file
include/tpxxxhwdep.h Hardware abstraction library header file
include/tpxxxhwdep.c Hardware abstraction library source file
serial/ UART driver directory
serial/Makefile Serial driver makefile
serial/tpmc861serial.c Serial driver source file
serial/tpmc861serialdef.h Serial driver private header file
serial/2.4.x Kernel 2.4.x sources directory
serial/2.4.x/Makefile Serial driver makefile
serial/2.4.x/tpmc861serial.c Serial driver source file
serial/2.4.x/tpmc861serialdef.h Serial driver private header file
serial/makenode Shell script to create devices nodes manually
tpmc861def.h Driver private header file
tpmc861.h User application header file
Makefile Top-level Makefile

In order to perform an installation, extract all files of the archive TPMC861-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TPMC861-SW-82-SRC.tar.gz’ will extract the files
into the local directory.

Login as root and change to the target directory

Copy tpmc861.h /usr/include

TPMC861-SW-82 - Linux Device Driver Page 6 of 20

Build and install the Device Driver2.1
Login as root

Change to the tpmc861 target directory

To create and install the HAL and SERIAL driver in the module directory
/lib/modules/<version>/misc enter:

make install

To update the device driver’s module dependencies, enter:

depmod -aq

Uninstall the Device Driver2.2
Login as root

Change to the tpmc861 target directory

To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

Install Device Driver into the running Kernel2.3
To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tpmc861serialdrv

After the first build or if you are using dynamic major device allocation it’s necessary to create
new device nodes on the file system. Please execute the script file makenode, which resides in
serial/ directory, to do this. If your kernel has enabled a device file system (devfs, udev, ...) then
skip running the makenode script. Instead of creating device nodes from the script the driver
itself takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each compatible channel found. The first
channel of the first PMC module can be accessed with device node /dev/ttySTPMC861_0, the second
channel with device node /dev/ttySTPMC861_1 and so on.

The assignment of device nodes to physical PMC modules depends on the search order of the PCI
bus driver.

TPMC861-SW-82 - Linux Device Driver Page 7 of 20

Remove Device Driver from the running Kernel2.4
To remove the device driver from the running kernel login as root and execute the following
command:

modprobe –r tpmc861serialdrv

If your kernel has enabled a device file system (devfs, udev, ...), all /dev/ttySTPMC861_* nodes will be
automatically removed from your file system after this.

Make sure that the driver isn’t opened by any application program. If opened you will get the
response “tpmc861serialdrv: Device or resource busy” and the driver will still remain in the
system until you close all opened files and execute modprobe –r again.

Change Major Device Number2.5
This paragraph is only for Linux kernels without a device file system installed.

The released TPMC861 driver uses dynamic allocation of major device numbers. If this isn’t suitable
for the application it’s possible to define a major number for the TTY driver.

To change the major number edit the file serial/<version>/tpmc861serial.c, change the following
symbol to appropriate value and enter make install to create a new driver.

TPMC861_TTY_MAJOR Defines the value for the terminal device. Valid numbers are in range
between 0 and 255. A value of 0 means dynamic number allocation.

Example:

#define TPMC861_TTY_MAJOR 122

Be sure that the desired major number isn’t used by other drivers. Please check /proc/devices
to see which numbers are free.

Keep in mind that’s necessary to create new device nodes if the major number for the
TPMC861 driver has changed and the makenode script isn’t used.

TPMC861-SW-82 - Linux Device Driver Page 8 of 20

FIFO Configuration2.6
After installation of the TPMC861 Device Driver the trigger levels for both transmit and receive FIFO
are set to their default values.

Default values are:

Receive FIFO Transmit FIFO
96 32

The configuration of the FIFO trigger level is used for all TPMC861 devices in common.

To change the trigger levels edit the file hal/tpmc861haldef.h, change the following symbols to
appropriate values and enter make install to create a new driver.

TPMC861_RX_TRG_DEF Define the trigger level for the receiver FIFO of a TPMC861 with
XR16C864 controller.

Valid trigger levels are:
UART_TRG_1
UART_TRG_4
UART_TRG_8
UART_TRG_16
UART_TRG_32
UART_TRG_64
UART_TRG_96
UART_TRG_120
UART_TRG_128

TPMC861_TX_TRG_DEF Define the trigger level for the transmitter FIFO of a TPMC861 with
XR16C864 controller.

Valid trigger levels are:
UART_TRG_1
UART_TRG_4
UART_TRG_8
UART_TRG_16
UART_TRG_32
UART_TRG_64
UART_TRG_96
UART_TRG_120
UART_TRG_128

Please refer to the User Manual of the XR16C864 controller to get more information how to
customize suitable FIFO trigger level.

Configuration hints2.7
After loading the devices the device configuration can be changed. Be sure if it makes sense to have
echo enabled. It must be disabled for RS485 and it must never be enabled on both sides of a
connection. By default the echo is enabled after loading the device. Configuration can be changed
with the stty function.

TPMC861-SW-82 - Linux Device Driver Page 9 of 20

3 Device Input/Output Functions
This chapter describes the interface to the device driver I/O system.

open3.1

NAME

open() - open a file descriptor

SYNOPSIS

#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise
OR of the appropriate parameters (using the | operator in C). See also the GNU C Library
documentation for more information about the open function and open flags.

EXAMPLE

int fd;

fd = open(“/dev/ttySTPMC861_0”, O_RDWR);
if (fd == -1)
{

/* handle error condition */
}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

TPMC861-SW-82 - Linux Device Driver Page 10 of 20

ERRORS

Error Code Description
ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TPMC861-SW-82 - Linux Device Driver Page 11 of 20

close3.2

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0) {
/* handle close error conditions */

}

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

Error Code Description
ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TPMC861-SW-82 - Linux Device Driver Page 12 of 20

ioctl3.3

NAME

ioctl() device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl
(

int filedes,
int request,
void *argp

)

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation. The argument request specifies the control
code for the operation. The optional argument argp depends on the selected request and is described
for each request in detail later in this chapter.

The following ioctl codes are defined in tpmc861.h:

Value Description
TPMC861_IOCQ_BIST Start Built-In-Self-Test
TPMC861_IOCT_SPEED Setup user defined baud rates
TPMC861_IOCQ_GET_SPEED Returns the current configured baud rate

See below for more detailed information on each control code.

To use these TPMC861 specific control codes the header file tpmc861.h must be included in
the application.

RETURNS

On success, zero is returned. In case of an error, a value of –1 is returned. The global variable errno
contains the detailed error code.

TPMC861-SW-82 - Linux Device Driver Page 13 of 20

ERRORS

Error Code Description
EINVAL Invalid argument. This error code is returned if the requested ioctl function is

unknown. Please check the argument request.

Other function dependent error codes will be described for each ioctl code separately. Note, the
TPMC861 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TPMC861-SW-82 - Linux Device Driver Page 14 of 20

3.3.1 TPMC861_IOCQ_BIST

NAME

TPMC861_IOCQ_BIST – Start Built-In-Self-Test

DESCRIPTION

The TPMC861 driver supports a special IOCTL function for testing module hardware and for system
diagnostic. The optional argument can be omitted for this ioctl function.

The functionality is called Built-In-Self-Test or BIST. With BIST you can test each channel of all your
modules separately. There are three different test classes. First is a line test, second an interrupt test
and the last a data integrity test. All tests run with local channel loopback enabled, so you don’t need
an external cable connection.

The line test contains a test of all modem lines, as you can see RTS and CTS, DTR and DSR, OP1
and RI and finally OP2 and CD. Only the static states for both electrical levels are tested on each
sender – receiver line pair.

TPMC861-SW-82 - Linux Device Driver Page 15 of 20

For testing interrupts the BIST transmits a test buffer with known data and size. All data should be
received on same channel during internal loopback. If not, there is an interrupt error. The buffer size is
1024 BYTE. The baudrate is set to 115200 BAUD for test buffer transmission. After the BIST
completes the old channel settings are restored.

The last test verifies received data to assert data integrity.

EXAMPLE

#include “tpmc861.h”

int result;

/*
** Start Built-In Selftest, assumes an open device handle in “tty1”
*/
result = ioctl(tty1, TPMC861_IOCQ_BIST, NULL);

if (result < 0)
{

printf("ERRNO %d - %s\n", errno, strerror(errno));
}
else if (result > 0)
{

printf("Error during Built-In Selftest <0x%08X>!\n", result);

if (result & TPMC861_ERTSCTS)
printf("RTS/CTS line broken!\n");

if (result & TPMC861_EDTRDSR)
printf("DTR/DSR line broken!\n");

if (result & TPMC861_ERI)
printf("OP1/RI line broken!\n");

if (result & TPMC861_ECD)
printf("OP2/DCD line broken!\n");

if (result & TPMC861_EDATA)
printf("Data integrity test failed!\n");

} else {
printf("INFO: Port %s successfully tested.\n", DevName);

}

TPMC861-SW-82 - Linux Device Driver Page 16 of 20

RETURNS

If return value is >0, one of three tests failed. Use the following flags to get a detailed error description.

Value Description
TPMC861_ERTSCTS If set RTS/CTS line broken.
TPMC861_EDTRDSR If set DTR/DSR line broken.
TPMC861_ERI If set OP1/RI line broken.
TPMC861_ECD If set OP2/CD line broken.
TPMC861_EDATA Data integrity test failed. No correct transmission

possible.

ERRORS

Error Code Description
ETIME A timeout occurred during wait, interrupts do not

work correctly.
EAGAIN Your task should never been blocked. Change it to

use the Built-In-Self-Test.
ERESTARTSYS Interrupted by external signal.

TPMC861-SW-82 - Linux Device Driver Page 17 of 20

3.3.2 TPMC861_IOCT_SPEED

NAME

TPMC861_IOCT_SPEED – Setup user defined baud rates

DESCRIPTION

This ioctl function sets up a user defined baud rate. This allows using the TPMC861 device with every
adjustable baud rate.

The new baud rate is passed by value by the parameter arg to the driver. The maximum baud rate
limit is 460800 Baud.

If a user defined baud rate is set, standard tools (like stty) will return invalid information about
the selected baud rate.

EXAMPLE

#include <tpmc861.h>

int result, tty1;

/* Setup 76800 Baud */
result = ioctl(tty1, TPMC861_IOCT_SPEED, 76800);

if (result < 0) {
/* handle errors */

}

TPMC861-SW-82 - Linux Device Driver Page 18 of 20

3.3.3 TPMC861_IOCQ_GET_SPEED

NAME

TPMC861_IOCQ_GET_SPEED – Read the actually configured baud rate

DESCRIPTION

This ioctl function returns the actually configured baud rate of the specified channel. This allows
checking if a baud rate can be configured correctly or if it is substituted by the nearest configurable
baud rate.

The current baud rate is returned in the integer argument the parameter arg points on.

EXAMPLE

#include <tpmc861.h>

int result, tty1, baudrate;

result = ioctl(tty1, TPMC861_IOCQ_GET_SPEED, &baudrate);

if (result < 0) {
/* handle errors */

}
else {

printf(“Current Baudrate: %d\n”, baudrate);
}

TPMC861-SW-82 - Linux Device Driver Page 19 of 20

4 Device Driver Programming
The TPMC861 driver is loosely based on the standard Linux terminal driver. Due to this way of
implementation the driver interface and functionality is compatible to the standard Linux terminal
driver.

Please refer to the TERMIOS man page and driver programming related man pages for more
information about serial driver programming.

The source files tpmc861example.c, tpmc861setspeed.c and tpmc861bist.c contain additional
programming examples.

Setting up Baud Rates4.1
The driver allows setting all baud rates supported by the channel. Not only standard baud rates are
supported, also special baud rates are supported. The driver will always try to set the best matching
baud rate.

There are two possibilities setting up baud rates:

The first is used to setup predefined baud rates, this is the standard way by using the termios structure
(e.g. using stty).

The second way allows the selection of all baud rates the module can support. This way uses the ioctl
function TPMC861_IOCT_SPEED (please refer to the description of the ioctl function).

TPMC861-SW-82 - Linux Device Driver Page 20 of 20

5 Diagnostic
If the TPMC861 does not work properly it is helpful to get some status information from the driver
respective kernel.

The Linux /proc file system provides information about kernel, resources, driver, devices, and so on.
The following screen dumps displays information of a correct running TPMC861 driver (see also the
proc man pages).

lspci -v
04:01.0 Multiport serial controller: TEWS Technologies GmbH TPMC861 4-
Channel Isolated Serial Interface RS422/RS485 (rev 0a)

Subsystem: TEWS Technologies GmbH Device 000a
Flags: medium devsel, IRQ 16
Memory at feb9fc00 (32-bit, non-prefetchable) [size=128]
I/O ports at e880 [size=128]
Memory at feb9f800 (32-bit, non-prefetchable) [size=64]
Kernel driver in use: TEWS TECHNOLOGIES - TPMC861HAL Driver
Kernel modules: tpmc861haldrv

lsmod | grep tpmc861
tpmc861serialdrv 325464 0
tpmc861haldrv 18023 1 tpmc861serialdrv

ls /dev | grep 861
ttySTPMC861_0
ttySTPMC861_1
ttySTPMC861_2
ttySTPMC861_3

cat /proc/tty/driver/tpmc861serial
serinfo:1.0 driver revision:
0: uart:XR16C864 mmio:0xFEB9F800 irq:16 tx:11024 rx:1024
1: uart:XR16C864 mmio:0xFEB9F808 irq:16 tx:1024 rx:1024
2: uart:XR16C864 mmio:0xFEB9F810 irq:16 tx:2048 rx:2048
3: uart:XR16C864 mmio:0xFEB9F818 irq:16 tx:1024 rx:11024

