
The Embedded I/O Company

TPMC600-SW-65
Windows 2000/XP Device Driver

32/16 Digital Inputs (24V)

Version 1.1.x

User Manual
Issue 1.1.0
January 2009

TEWS TECHNOLOGIES GmbH TEWS TECHNOLOGIES LLC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49 (0) 4101 4058 0
Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com

9190 Double Diamond Parkway,
Suite 127, Reno, NV 89521, USA
www.tews.com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 2 of 20

TPMC600-SW-65
Windows 2000/XP Device Driver

32/16 Digital Inputs (24V)

Supported Modules:
TPMC600

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2003-2009 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0.0 First Issue August 28, 2003
1.1.0 General Revision January 7, 2009

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 3 of 20

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Software Installation ...5
2.1.1 Windows 2000 / XP..5
2.1.2 Confirming Windows 2000 / XP Installation ...5

2.2 Change maximum number of event jobs ...6
3 TPMC600 DEVICE DRIVER PROGRAMMING .. 7

3.1 TPMC600 Files and I/O Functions ...7
3.1.1 Opening a TPMC600 Device ...7
3.1.2 Closing a TPMC600 Device...9
3.1.3 TPMC600 Device I/O Control Functions..10

3.1.3.1 IOCTL_TP600_READ ..12
3.1.3.2 IOCTL_TP600_READ_EVENT ..14
3.1.3.3 IOCTL_TP600_DEBENABLE...18
3.1.3.4 IOCTL_TP600_DEBDISABLE..20

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 4 of 20

1 Introduction
The TPMC600-SW-65 Windows 2000/XP device driver allows the operation of the TPMC600 Digital
Input PMC conforming to the Windows 2000/XP I/O system specification. This includes a device-
independent basic I/O interface with open(), close() and ioctl() functions.

The TPMC600-SW-65 device driver supports the following features:

read the input port immediately without waiting for a specific input event
read the input port after the following events occur
o masked input bits match to the specified pattern
o high-transition at the specified bit position
o low-transition at the specified bit position
o any transition (high or low) at the specified bit position
configure & start and stop input debouncer

The TPMC600-SW-65 device driver supports the modules listed below:

TPMC600-10 32 digital input lines (PMC)
TPMC600-11 16 digital input lines (PMC)
TPMC600-20 32 digital input lines (Back-I/O) (PMC)
TPMC600-21 16 digital input lines (Back-I/O) (PMC)

To get more information about the features and use of TPMC600 devices it is recommended to read
the manuals listed below.

TPMC600 User manual
TPMC600 Engineering Manual

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 5 of 20

2 Installation
Following files are located on the distribution media:

Directory path ‘.\TPMC600-SW-65\’:

tpmc600.sys TPMC600 Windows driver binary device driver source
tpmc600.inf TPMC600 Windows installation file
tpmc600.h TPMC600 include file for application
example/tpmc600exa.c Example application (Microsoft Visual C)
TPMC600-SW-65-1.1.0.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

2.1 Software Installation

2.1.1 Windows 2000 / XP
This section describes how to install the TPMC600 Device Driver on a Windows 2000 / XP operating
system.

After installing the TPMC600 card(s) and boot-up your system, Windows 2000 / XP setup will show a
"New hardware found" dialog box.

1. The "Upgrade Device Driver Wizard" dialog box will appear on your screen.
Click "Next" button to continue.

2. In the following dialog box, choose "Search for a suitable driver for my device".
Click "Next" button to continue.

3. Insert the TPMC600 driver media; select "Disk Drive" in the dialog box.
Click "Next" button to continue.

4. Now the driver wizard should find a suitable device driver on the media.
Click "Next" button to continue.

5. Complete the upgrade device driver and click "Finish" to take all the changes effect.

6. Now copy all needed files (tpmc600.h, TPMC600-SW-65.pdf) to the desired target directories.

After successful installation the TPMC600 device driver will start immediately and creates devices
(TPMC600_1, TPMC600_2 ...) for all recognized TPMC600 modules.

2.1.2 Confirming Windows 2000 / XP Installation
To confirm that the driver has been properly loaded in Windows 2000 / XP, perform the following
steps:

1. From Windows 2000 / XP, open the "Control Panel" from "My Computer".

2. Click the "System" icon and choose the "Hardware" tab, and then click the "Device
Manager" button.

3. Click the "+" in front of "Other Devices".
The driver " TEWS TECHNOLOGIES TPMC600 (32/16 digital Input)" should appear.

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 6 of 20

2.2 Change maximum number of event jobs
The TPMC600 device driver uses jobs, allocated during device startup, for event handling. There are
just a limited number of jobs available, by default there are 10 jobs allocated.

If the default value is not suitable the configuration can be changed by modifying the registry, for
instance with regedt32.

To change the maximum number of jobs the following value must be modified.

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\TPMC600\NumReqEntries

The size value must be greater than 0

After changing the value in the registry the device must be stopped and restarted or the
system must be rebooted.

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 7 of 20

3 TPMC600 Device Driver Programming
The TPMC600-SW-65 Windows WDM device driver is a kernel mode device driver.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceIoControl) provide
the basic interface for opening and closing a device handle and for performing device I/O control
operations.

All of these standard Win32 functions are described in detail in the Windows Platform SDK
Documentation (Windows base services / Hardware / Device Input and Output).

For details refer to the Win32 Programmers Reference of your used programming tools (C++, Visual
Basic etc.)

3.1 TPMC600 Files and I/O Functions
The following section doesn’t contain a full description of the Win32 functions for interaction with the
TPMC600 device driver. Only the required parameters are described in detail.

3.1.1 Opening a TPMC600 Device
Before you can perform any I/O the TPMC600 device must be opened by invoking the CreateFile
function. CreateFile returns a handle that can be used to access the TPMC600 device.

HANDLE CreateFile(
LPCTSTR lpFileName, // pointer to name of the file
DWORD dwDesiredAccess, // access (read-write) mode
DWORD dwShareMode, // share mode
LPSECURITY_ATTRIBUTES lpSecurityAttributes, // pointer to security attributes
DWORD dwCreationDistribution, // how to create
DWORD dwFlagsAndAttributes, // file attributes
HANDLE hTemplateFile // handle to file with attributes to copy

)

lpFileName
Points to a null-terminated string, which specifies the name of the TPMC600 to open.
The lpFileName string should be of the form \\.\TPMC600_x to open the device x. The ending x
is a one-based number. The first device found by the driver is \\.\TPMC600_1, the second
\\.\TPMC600_2 and so on.

dwDesiredAccess
Specifies the type of the access to the TPMC600.
For the TPMC600 this parameter must be set to read-write access (GENERIC_READ |
GENERIC_WRITE)

dwShareMode
Set of bit flags, that specifies how the object can be shared. Set to 0.

lpSecurityAttributes
Pointer to a security structure. Set to NULL for TPMC600 devices.

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 8 of 20

dwCreationDistribution
Specifies the action to take on files that exist, and which action to take when files do not exist.
TPMC600 devices must be always opened OPEN_EXISTING.

dwFlagsAndAttributes
Specifies the file attributes and flags for the file. This value must be set to 0 (no overlapped I/O).

hTemplateFile
This value must be NULL for TPMC600 devices.

Return Value

If the function succeeds, the return value is an open handle to the specified TPMC600 device. If the
function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call
GetLastError.

Example

HANDLE hDevice;

hDevice = CreateFile(
“\\\\.\\TPMC600_1”,
GENERIC_READ | GENERIC_WRITE,
0,
NULL, // no security attrs
OPEN_EXISTING, // TPMC600 device always open existing
0, // no overlapped I/O
NULL

);

if (hDevice == INVALID_HANDLE_VALUE) {
ErrorHandler("Could not open device"); // process error

}

See Also

CloseHandle(), Win32 documentation CreateFile()

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 9 of 20

3.1.2 Closing a TPMC600 Device
The CloseHandle function closes an open TPMC600 handle.

BOOL CloseHandle(
HANDLE hDevice; // handle to a TPMC600 device to close

)

hDevice
Identifies an open TPMC600 handle.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Example

HANDLE hDevice;

if(CloseHandle(hDevice)) {
ErrorHandler("Could not close device"); // process error

}

See Also

CreateFile(), Win32 documentation CloseHandle()

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 10 of 20

3.1.3 TPMC600 Device I/O Control Functions
The DeviceIoControl function sends a control code directly to a specified device driver, causing the
corresponding device to perform the specified operation.

BOOL DeviceIoControl(
HANDLE hDevice, // handle to device of interest
DWORD dwIoControlCode, // control code of operation to perform
LPVOID lpInBuffer, // pointer to buffer to supply input data
DWORD nInBufferSize, // size of input buffer
LPVOID lpOutBuffer, // pointer to buffer to receive output data
DWORD nOutBufferSize, // size of output buffer
LPDWORD lpBytesReturned, // pointer to variable to receive output byte count
LPOVERLAPPED lpOverlapped // pointer to overlapped structure for asynchronous operation

);

hDevice
Handle to the TPMC600 that is to perform the operation.

dwIoControlCode
Specifies the control code for the operation. This value identifies the specific operation to be
performed. The following values are defined in tpmc600.h :
Value Meaning
IOCTL_TP600_READ Read input port immediately
IOCTL_TP600_READ_EVENT Read input port after specified event occur
IOCTL_TP600_DEBENABLE Enable input debounce function
IOCTL_TP600_DEBDISABLE Disable input debounce function

See behind for more detailed information on each control code.

lpInBuffer
Pointer to a buffer that contains the data required to perform the operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpInBuffer.

lpOutBuffer
Pointer to a buffer that receives the operation’s output data.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer.

lpBytesReturned
Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to
by lpOutBuffer. A valid pointer is required.

lpOverlapped
Pointer to an Overlapped structure. This value must be set to NULL (no overlapped I/O).

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 11 of 20

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Note. The TPMC600 driver returns always standard Win32 error codes on failure, please refer to the
Windows Platform SDK Documentation for a detailed description of returned error codes.

See Also

Win32 documentation DeviceIoControl()

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 12 of 20

3.1.3.1 IOCTL_TP600_READ
This control function reads the input port of the TPMC600 associated with the open device handle.

The contents is returned in a unsigned long buffer pointed by lpOutBuffer . The buffer must be always
an unsigned long type independent of the TPMC600 variant. The argument nOutBufferSize specifies
the size (size of ULONG) of the read buffer.

For the TPMC600 variant 11/21 only the lower 16 bits are relevant

Example

#include <windows.h>
#include <winioctl.h>
#include “tpmc600.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
ULONG PortData;

success = DeviceIoControl (
hDevice, // TPMC600 handle
IOCTL_TP600_READ, // control code
NULL,
0,
&PortData,
sizeof(PortData),
&NumBytes,
NULL // not over lapped

);
if(success) {

printf("\nRead input port successful (input port = 0x%x)\n",
PortData);

}
else {

ErrorHandler ("Device I/O control error”); // process error
}

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 13 of 20

Error Codes

ERROR_INVALID_PARAMETER This error is returned if the size of the read buffer is
too small

See Also

Win32 documentation DeviceIoControl(), TPMC600 Hardware User Manual

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 14 of 20

3.1.3.2 IOCTL_TP600_READ_EVENT
The "event read function" reads the contents of the input port either immediately or after a specified
event occur. Possible events are rising or falling edge or both, at a specified input bit or a pattern
match of masked input bits.

Both parameter lpInBuffer and lpOutBuffer must pass a pointer to the read buffer
(TP600_READ_BUFFER) to the device driver.

typedef struct {
unsigned long value;
unsigned long mode;
unsigned long mask;
unsigned long match;
long timeout;

} TP600_READ_BUFFER, *PTP600_READ_BUFFER;

value
Receives the contents of the input port

There is a delay between the specified event and the input value read that is based on the
system and OS dependent interrupt latency.

mode
Specifies the “event” mode for this read request
TP600_NOW The driver reads the input port and returns immediately to the caller.

The parameter mask, match and timeout are not relevant in this
mode. This mode is equal to the control function
IOCTL_TP600_READ.

TP600_MATCH The driver reads the input port if the masked input bits match to the
specified pattern. The input mask must be specified in the parameter
mask. A 1 value in the mask means than the input bit value “must-
match” identically to the corresponding bit in the match parameter.
It is not recommended using the match event; events may not be
recognized because of interrupt latency.

TP600_HIGH_TR The driver reads the input port, if a high-transition at the specified bit
position occurs. A 1 value in mask specifies the bit position of the
input port. If you specify more than one bit position the events are
OR’ed. That means the read will be completed if a high-transition at
least at one relevant bit position occur.

TP600_LOW_TR The driver reads the input port, if a low-transition at the specified bit
position occurs. A 1 value in mask specifies the bit position of the
input port. If you specify more than one bit position the events are
OR’ed. That means the read will be completed if a low-transition at
least at one relevant bit position occur.

TP600_ANY_TR The driver reads the input port, if a transition (high or low) at the
specified bit position occurs. A 1 value in mask specifies the bit
position of the input port. If you specify more than one bit position
the events are OR’ed. That means the read will be completed if a
transition at least at one relevant bit position occur.

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 15 of 20

mask
Specifies a bit mask. A 1 value marks the corresponding bit position as relevant.

match
Specifies a pattern that must match to the contents of the input port. Only the bit positions
specified by mask must compare to the input port.

timeout
Specifies the amount of time (in seconds) the caller is willing to wait for the specified event to
occur. A value of 0 means wait indefinitely.

Example

#include <windows.h>
#include <winioctl.h>
#include “tpmc600.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP600_READ_BUFFER ReadBuf;

/*
** Read input port immediately without waiting for any event
*/
ReadBuf.mode = TP600_NOW;

success = DeviceIoControl (
hDevice, // TPMC600 handle
IOCTL_TP600_READ_EVENT,
&ReadBuf, // parameter for the driver
sizeof(TP600_READ_BUFFER),
&ReadBuf, // contains the read data
sizeof(TP600_READ_BUFFER),
&NumBytes, // size of returned ReadBuffer
0

);
if(success) {

printf(“Input port = 0x%x\n”, ReadBuf.value);
}
else {

ErrorHandler ("Device I/O control error”); // process error
}

…

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 16 of 20

…

/*
** Read the input port after..
** bit 0 = 0
** bit 1 = 1
** bit 6 = 0
** bit 7 = 1
*/
ReadBuf.mode = TP600_MATCH;
ReadBuf.mask = 0x00C3; // bit 0,1,6,7 are relevant
ReadBuf.match = 0x0082;
ReadBuf.timeout = 10; // seconds

success = DeviceIoControl (
hDevice, // TPMC600 handle
IOCTL_TP600_READ_EVENT,
&ReadBuf, // parameter for the driver
sizeof(TP600_READ_BUFFER),
&ReadBuf, // contains the read data
sizeof(TP600_READ_BUFFER),
&NumBytes, // size of returned ReadBuffer
0

);
if(success) {

printf(“Input port = 0x%x\n”, ReadBuf.value);
}
else {

ErrorHandler ("Device I/O control error”); // process error
}

/*
** Read the input port after a high-transition at bit 7
** occured
*/
ReadBuf.mode = TP600_HIGH_TR;
ReadBuf.mask = 1<<7; // high-transition at bit 7
ReadBuf.timeout = 10; // seconds

…

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 17 of 20

…

success = DeviceIoControl (
hDevice, // TPMC600 handle
IOCTL_TP600_READ_EVENT,
&ReadBuf, // parameter for the driver
sizeof(TP600_READ_BUFFER),
&ReadBuf, // contains the read data
sizeof(TP600_READ_BUFFER),
&NumBytes, // size of returned ReadBuffer
0

);
if(success) {

printf(“Input port = 0x%x\n”, ReadBuf.value);
}
else {

ErrorHandler ("Device I/O control error”); // process error
}

Error Codes

ERROR_INVALID_PARAMETER This error is returned if the size of the read buffer is
too small or if the parameter mode contains an invalid
value.

ERROR_NO_SYSTEM_RESOURCES No more free entries in the drivers queue to handle
concurrent event-controlled read requests. Increase
the queue size.

ERROR_SEM_TIMEOUT The requested event does not occur within the
specified time (timeout).

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl(), TPMC600 Hardware User Manual

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 18 of 20

3.1.3.3 IOCTL_TP600_DEBENABLE
This control function enables the input debouncer function.

The new timer value is passed by an unsigned short variable, pointed by lpInBuffer, to the driver. The
argument nInBufferSize specifies the size (size of USHORT) of the debouncer value.

See also TPMC600 Hardware User Manual – Debounce Time Register for counter calculation
formulas.

Example

#include <windows.h>
#include <winioctl.h>
#include “tpmc600.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
USHORT DebounceTime;

/*
** Enable the debouncer with a debounce time of 1ms
*/
DebounceTime = 147;

success = DeviceIoControl (
hDevice, // TPMC600 handle
IOCTL_TP600_DEBENABLE, // control code
&DebounceTime,
sizeof(DebounceTime),
NULL,
0,
&NumBytes,
NULL // not overlapped

);
if(success) {

printf("\nEnable output watchdog successful\n");
}
else {

ErrorHandler ("Device I/O control error”); // process error
}

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 19 of 20

Error Codes

ERROR_INVALID_PARAMETER This error is returned if the size of the timer value
buffer is too small

See Also

Win32 documentation DeviceIoControl(), TPMC600 Hardware User Manual

TPMC600-SW-65 – Windows 2000/XP Device Driver Page 20 of 20

3.1.3.4 IOCTL_TP600_DEBDISABLE
This control function disables the input debouncer function enabled by IOCTL_TP600_DEBENABLE.

There are no parameters required for this call.

Example

#include <windows.h>
#include <winioctl.h>
#include “tpmc600.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;

success = DeviceIoControl (
hDevice, // TPMC600 handle
IOCTL_TP600_DEBDISABLE, // control code
NULL,
0,
NULL,
0,
&NumBytes,
NULL // not over lapped

);
if(success) {

printf("\nDisable output watchdog successful\n");
}
else {

ErrorHandler ("Device I/O control error”); // process error
}

See Also

Win32 documentation DeviceIoControl(), TPMC600 Hardware User Manual

