

MTCA System Architecture Presentation for CAMECA Ametek

June 2022

- More than 25 years in the market
- Privately owned
- Over 25 years VME experience
- Own Lab and integration facilities
- powerBridge Computer has delivered over 27.000 VME boards and 5.500 systems
- PICMG member, actively working on MTCA.4 and Next Gen specification
- ISO 9001:2015 and 14001:2015 approved

power ridge and their partners are the backbone of VITA & PICMG Technology. We are experts of technologies.

Defense

Luft- und Raumfahrt

Medizintechnik

Telekommunikation

Forschung

Transport

powerBridge Computer has the right solution ... From building blocks to systems for any branch

powerBridge Computer

In which application is MTCA already used?

MTCA IN THE MARKET

Industrial Automation

Transportation

What is MTCA?

OVERVIEW MTCA

What is MTCA?

CHASSIS

All technical data show just a small selection of possibilties

1 HE RackPack 2 Full-size AMC

All technical data show just a small selection of possibilties

1 HE RackPack 6 Mid-size AMC

All technical data show just a small selection of possibilties

2 HE RackPack 5 double mid-size AMC

All technical data show just a small selection of possibilties

All technical data show just a small selection of possibilties

9 HE RackPack
12 double mid-size AMC

Advancd Mezzanies Card - Overview

AMCs

• AMCs are cards to customize the system to your application.

- AMCs are cards to customize the system to your application.
- Up to 12 cards for each system

- AMCs are cards to customize the system to your application.
- Up to 12 cards for each system

AMCs are for example:

powerful CPUs

- AMCs are cards to customize the system to your application.
- Up to 12 cards for each system

AMCs are for example:

- powerful CPUs
- FPGAs

- AMCs are cards to customize the system to your application.
- Up to 12 cards for each system

AMCs are for example:

- powerful CPUs
- FPGAs
- fully developed environment of I/Os

Compact Size (3 TE)

Mid Size (4 TE)

Full Size (6 TE)

Double Modules

(150 mm)

Compact Size (3 TE)

Mid Size (4 TE)

Full Size (6 TE)

AMC - CPU

All technical data show just a small selection of possibilties

Intel Xeon E3 | 2x 5 x SATA | 2x

| 2x GigE | 2x PCle x4 Gen 3 Intel Xeon E3 | 2x SFPx 2x 10 GigE | 2x 2 TB SSD

AMC - FPGA

All technical data show just a small selection of possibilties

Xilinx FPGA

| FMC Mezzanine

Xilinx FPGA | 4x GbE PoE Ports FMC

AMC - FPGA

All technical data show just a small selection of possibilties

Xilinx FPGA

| FMC Mezzanine

FMC Module

4 A/D Inputs

AMC - Mezzanines PMC

All technical data show just a small selection of possibilties

AMC Mezzanine Carrier

PMC Module

PMC | 64 bit TTL I/O Modul

PMC | 32x 16 bit ADC, 8x 16bit DAC

XMC | 16 bit Thermo-/ DMS Modul

XMC | FPGA mit 48 TTL I/O, 32x 16bit Analog In

XMC Mezzanines

PMC | 2x CAN Bus Interface

PMC Mezzanines

PMC | TPMC816 2-fach CAN Bus Controller mit CAN High-Speed und modifiziertem RS485 Interface

PMC | 4x 1GBase TX Ethernet Ports

XMC | 2x 10GBase TX Ethernet Ports

PMC Mezzanines

EXAMPLES

Example for FPGA Mezzanines

MTCA FOR IMAGE PROCESSING

Standalone 2nd FMC

Features

- Data Input via GiG E Vision FMC
- Direct access to the inputs via 2nd FMC with HDMI Interfaces.

NAT-AMC -FMC

Image Processing System mid-range

Example for different Route complexes

TWO COMPUTER IN ONE SINGLE CHASSIS

Challenge:

 Two or more PC-Systems are required But

Space is limited

Solution

One single MTCA Chassis (e.g. 2HE)

- One single MTCA Chassis (e.g. 2HE)
- Plug in your required AMCs; e.g. 2x CPU, several I/0

- One single MTCA Chassis (e.g. 2HE)
- Plug in your required AMCs; e.g. 2x CPU, several I/0

- One single MTCA Chassis (e.g. 2HE)
- Plug in your required AMCs; e.g. 2x CPU, several I/0
- Define Root Complex

Solution

- One single MTCA Chassis (e.g. 2HE)
- Plug in your required AMCs; e.g. 2x CPU, several I/0
- Define Root Complex

Root Complex 1

- One single MTCA Chassis (e.g. 2HE)
- Plug in your required AMCs; e.g. 2x CPU, several I/0
- Define Root Complex

Solution

- One single MTCA Chassis (e.g. 2HE)
- Plug in your required AMCs; e.g. 2x CPU, several I/0
- Define Root Complex

... up to three Root Complexes are possible in a six Slot System

MTCA Carrier Hub - Overview

MCH

MCH Basic understanding

Base Functions

- System Manager for:
 - Chassis and Fan unit
 - Power modules
 - Payload cards Manager AMC's

Hotswap Manager

- Replacement of cards during operation without downtime
- Redundancy manager (option)

Base Switch

 1 GbE witch between all cards in a system (12 AMC and 1 or 2 MCH)

Optional Functions

- Clock module
 - Clock distribution inside system
 - Clock in/out from/to external Systems
- Fabric switching
 - PCle Gen 3 x4– x16 (1-16 Gb/s)
 - XAUI, 2.5, 10, 40, 100 GbE switch
 - SRIO witch (8 Gb/s)

What is an MCH?

- The MCH is managing the system configuration, e.g. different root complexes
- The MCH provide external/internal clocks to the AMC
- The MCH integrate e.g. PCIe Switches
- Uplink x16 possibility to external devices

MCH Management Software "NAT View"

1. Overview and purpose.

NATview is an easy to use visualization tool for any MicroTCA system that includes a NAT-MCH. NATview allows the user to view at and manipulate the components of the MicroTCA system in a graphical way.

2. Platform independence.

NATview runs on every platform that can execute Oracle Java 1.7. It has been successfully tested on Windows (XP to 10), Linux (Ubuntu, SuSE) and MacOS X (Leopard to High Sierra).

- 3. No installation required even runs from a memory stick.
- 4. Comprehensive graphical overview of the system state.
- 5. Read current sensor values.

Check the current sensor states and values. Even monitor values over time. Monitor

multiple sensors at the same time!

6. Backplane Connectivity Viewer

Comprehensive display of the backplane connections. Understand why the system does not boot or why the PCIe does not work.

MCH Management Software "NAT View"

7. FRU Editor

Check and modify the FRU info data of every FRU device in the system (if you have the license to do so).

MCH Management Software "NAT View"

8. Power Manager (reworked)

Easily change the power configuration – load sharing or redundancy – in no time with just a few mouse clicks. Switch all power channels for one power unit on or off with a single mouse click!

9. System Dump

When in trouble give your supporter the information they need – easy as 1-2-3:

10. HPM Update Update

the system firmware with a few mouse-clicks. No cryptic command lines!

MCH Management Software "NAT View"

12. Support for Non-Standard Systems

Displays the AMCs correctly even for non-standard orientations:

13. Checks for updates of the application on startup

Never miss a new NATview release again. NATview will only inform about a new release – download and installation is up to you so you are always in control!

14. Extendend help viewer

Quick help information is only one mouse click away.

The connection in MTCA

BACKPLANE

- Passive backplane
- LVDS Low Voltage Differential Signaling (ANSI/TIA/EIA-644-1995)
- Star/ Dual Star topology
- Large variety of transmission protocols
 - Ethernet
 - PCI Express
 - S-ATA/SAS
 - Serial Rapid I/O

Various of MCTA

MTCA.4

INTRODUCTION REAR TRANSMISSION MODULES - RTM

e.g.: fast processing of analog/digital signals on FPGA for controlling complex and time critical applications

e.g.: fast processing of analog/digital signals on FPGA for controlling complex and time critical applications

Technical details:

Sampling frequency: up to 10 GS/s

Sampling rate: up to 16bit

e.g.: fast processing of analog/digital signals on FPGA for controlling complex and time critical applications

Technical details:

Sampling frequency: up to 10 GS/s

Sampling rate: up to 16bit

→ Collecting Data on AMCs and processing on another AMC/CPU does not perform fast enough!

MTCA .4 - RTM

Solution:

Connecting I/O Modules direct to the AMC by an several Plug (Zone 3 - connector)

- Signals goes direct to the FPGA / no DSP necessary
- fast processing

MTCA .4 - RTM

Solution:

Connecting I/O Modules direct to the AMC by an several Plug (Zone 3 - connector)

- Signals go direct to the FPGA → no DSP necessary
- fast processing

MTCA .4 - RTM

Solution:

Connecting I/O Modules direct to the AMC by an several Plug (Zone 3 - connector)

- Signals goes direct to the FPGA / no DSP necessary
- fast processing

Zone 3 connector

Solution:

Connecting I/O Modules direct to the AMC by an several Plug (Zone 3 - connector)

- Signals goes direct to the FPGA / no DSP necessary
- fast processing

Solution:

Connecting I/O Modules direct to the AMC by an several Plug (Zone 3 - connector)

- Signals goes direct to the FPGA / no DSP necessary

- fast processing

Various of MCTA

ADVANTAGES MTCA

- Add the modules your application need
 - FPGA, I/O, CPU,
 - GigE, PCIe, 40GBASE
 - Fully developed environment of I/Os

- Add the modules your application need
- Keep the system up-to-date
 - Change modules, as the new application need
 - Simply extend your system
 - The system fits to your application

- Add the modules your application need
- Keep the system up-to-date
- Easy to maintain
 - Change your module, during the system is running

- Add the modules your application need
- Keep the system up-to-date
- Easy to maintain
 - Change your module, during the system is running
 - The MTCA System monitors, controls and supervises various parameter

Advantages MTCA

- Add the modules your application need
- Keep the system up-to-date
- Easy to maintainan
- Simply increase the reliability
 - Various options of the deepness of the redundant
 - Redundancy of single boards
 - Redundancy of cooling and power supply
 - Redundancy of all board
 - Redundancy of the system

Advantages MTCA

- Add the modules your application need
- Keep the system up-to-date
- Easy to maintainan
- Simply increase the reliability
- Future Safe!
 - powerBridge is working in PICMG on the next level MTCA (e.g. 100GbE, PCIe 4/5, backward compatibility)

Various of MCTA

SUMMARY

CPU

GPGPU as RTM

MTCA Kombinationen

Carrier XMC/FMC

SFP + GPU I/O, etc.

MTCA Kombinationen

FPGA

FMC - I/O - SDR

Several Computer in one single Chassis

... up to three Root Complexes are possible in 6 Slot Chassis

Systemproposal Migration from VME to MTCA.0

Used Boards

TVME200 4 Slot Industry Pack VMEbus Carrier

TIP675 48 TTL I/O Lines

TIP551 4 Channel of Isolated
16 bit D/A Conversion

TIP866 8 Channel Serial Interface RS232/TTL/RS422

TIP866-TM-20 Transition Module (8 x RJ45) for TIP866/867

TIP501 16 Channel of Isolated 16 bit A/D Conversion

14	1	TIP908-20	SCAN-IP TIP908-20	CAMECA
15	1	TIP908-TM-10	Transition Modul TIP908-TM-10	CAMECA
16	1	TIP908-TM-20	Transition Modul TIP908-TM-20	CAMECA

Special modules designed by TEWS Technologies. TEWS is ready to redesign the modules for other platforms.

Legacy System VME

Ро	Ме	ArtNr. (12)	ArtBez. (40)	Lieferant
0	1	CH2007-SYS-C	Consists:	ws
1	1	CH2007-PT	4HE 19" VME64 7-Slot System	Schroff
2	3	FP6/4	Frontplatte 6HE/4TE, chromatiert	Schroff
3	2	FP6/4S	EMV Frontplatte 6HE/4TE, komplett	Abrams
4	2	TVME200-10R	6HE-VMEbus Karte, 4 IP-Slots, FP-I/O	CAMECA
5	1	TIP675-10R	IP-Modul, 48 TTL Tri-State Ein/Ausgänge	CAMECA
6	1	Cabl/TR-675	Adapterkabel gecrimpt, FBL-X10-A	рВС
7	2	TIP551-10R	IP-Modul, 4-fach 16-bit DAC	CAMECA
8	2	Cabl/TR-551	Adapterkabel gecrimpt, FBL-X11-A, FBL-X13-B	рВС
9	1	TIP501-10R	IP-Modul,16 ADC, 16bit, optisch isol.	CAMECA
10	1	TIP866-20R	IndustryPak Modul, 8 RS422, FIFO	CAMECA
11	1	TIP866-10R	IP-Modul, 8 RS232 Ports, FIFO	CAMECA
12	2	TIP866-TM-20R	Transition Modul für TIP866, R-J-45	CAMECA
13	15	MTG-00797	Montage für CH2007-SYS	рВС
14	1	TIP908-20	SCAN-IP TIP908-20	CAMECA
15	1	TIP908-TM-10	Transition Modul TIP908-TM-10	CAMECA
16	1	TIP908-TM-20	Transition Modul TIP908-TM-20	CAMECA

TIP675-10R -> TPMC680-10R

TIP551-10R -> TPMC551-10R TIP866-10R -> TPMC866-10R

TIP501-10R -> TPMC533-10R

TIP866-20R -> TPMC866-11R

New System MTCA

	TVCW Oystorii WTOA				
	Ро	ME	Art. Nr.	Art. Bez.	Lieferant
	0	1	Chassis	12Slot 4 U or similar	Schroff
	1	1	AMC/E5/LX2	CPU	Concurrent/NAT
	2	5	PMC Carrier	SWFS PMC Carrier	NAT
	3	1	Storage AMC	SWFS Storage AMC	Vadatech
	4				
	5	1	TPMC680-10R	64-bit TTL I/O, 8 x 8-bit Port, interrupts, handshake modes, HD68, 7 ports available at P14 I/O	TEWS
	6	1	TPMC551-10R	8 Channel Isolated 16 bit D/A, +/- 10V or 0-10V, DB25	TEWS
	7	1	TPMC533-10R	32x differential ADC, 16x DAC and 8x Digital I/O, Simultaneous Sampling, HDRA100	TEWS
	8	1	TPMC461-11R	8 Channel Serial RS422, HD50	TEWS
	9	1	TPMC461-10R	8 Channel Serial RS232, HD50	TEWS
	10	N		Cable	pBC WS
1	11	1	NAT-PM 600	Powersupply as requested	NAT
1	12	1	MCH	Management Board for MTCA	NAT
1	13	8	MTG-00797	Montage für CH2007-SYS	pBC

Chassisdesign

Depth mm	296.0
Hight mm	177.8
Slotnumber	12
Description	MTCA.0 4U Subrack
Backplane	Dual Star 40Gbps Transferrate
Hight	4 U
Width 19"	84 HP

- Two hot-swap fan cassettes on the rear of the housing,
- each with a Cooling Unit Manager (CU EMMC),
- Air flow from the front bottom to the back
- Air filter, exchangeable from the front, with presence signal
- 4 U, 19 "rack system for
- 12 single mid-size AMC modules, 2 single full-size MCHs and 2 power modules with a width of up to 12 HP
- According to specification PICMG MTCA.0 R1.0
- Clock topology according to PICMG AMC.0 R2.0
- Backplane with dual-star topology, direct connections for S-ATA / SAS

Other chassis sizes and slot numbers are also available

CPU Board Intel

Key Features

- AM F54/341-60
- Single Mid-Size AMC module
- Intel® Skylake 4-core Intel Xeon E3-1505 L v5 (25W TDP) processor
- 16 Gbytes DRAM
- Front panel connections:
- 2 x 10GBASE-T (100/1000/10000) Ethernet for networking
- DisplayPort™v1.2,
- USB3.0
- RS232 Serial interface
- 64 GB Flash Drive Module for local boot and data storage
- BSP's availabel for Windows, Linux and VxWorks

There would be some effort required to port the software application to a board with Intel processor and PCIe bus.

CPU Board NXP Layerscape

This AMC is designed with the latest generation of NXP ARM CPUs. With up to 16 Cortex-A72 cores, PCIe- and SerDes-Interfaces as well as an Ethernet switch on-chip, the LX2160A is ideally suited for networking related usage. VxWorks can run on these new boards. There will be BSPs for VxW 7.x.

MAIN FEATURES

CPU

- NXP LX2160A ARM CPU 16x ARM A72 cores @ up to 2.2 GHz
- 24 SerDes
- 2x 72b DDR4
- TDP ~30W (@2.2 GHz)
- Embedded Ethernet Switch
- Frame Processing Hardware Engine

Memory

- 2x 64bit wide DRAM with ECC (72bit): up to 64GB total
- 128MB QSPI
- SPI MRAM
- 16 128GB eMMC
- MicroSD-Card

MMC

Atmel ATxMega 128

Front Panel Connectivity

- QSFP-Transceiver 1x 40G / 100G Ethernet (via x4 optical Lanes)
- 4x 10G / 25G Ethernet (each optical Lane operated separately)
- 2x 50G Ethernet (2x x2 optical Lanes operation)
- USB3 Type A
- Console via USB Type C
- Status / Fault / Hot-Swap LEDs

Environmental

Operating Environment

- 0 to +55 degrees Celsius
- Humidity: 5% to 95% (non-condensing)

2 Slot Evaluation system

Features:

... what's your application?

Various of MCTA

ACCESSORIES

Various of MCTA

TECHNICAL DEEPNESS MCH / PLUG IN/OUT OF AMC'S

Fieldbus.

EtherCAT. Master.

- MTCA System can act as EtherCAT Master
 - Configuration and management of EtherCAT networks
 - Cyclic exchange of process data
 - Sophisticated API common to all implementations as interface between the application and the EtherCAT master stack
 - Mailbox based communication with:
 - CAN application protocol over EtherCAT (CoE)
 - Ethernet over EtherCAT (EoE)
 - File over EtherCAT (FoE)
 - Servo Drive over EtherCAT (SoE)
 - Built-in detailed diagnostics and profiling functions
 - Written in ANSI-C designed with high performance, small resource usage and scalability in mind
 - The core components are operating system (OS) and CPU architecture independent
 - Adaption to many prevalent (real-time) operating systems available from stock
 - EtherCAT Master Class A according to ETG.1500

Fieldbus.

EtherCAT. Slaves.

EPS-6000

EtherCAT Slave modules

- EPS-6000 EtherCAT bus coupler
- EPS-1132 digital input 32 channel with SPI interface (sinking type)
- EPS-2032 digital output 32 channel with SPI interface (sourcing type)
- EPS-2308 relay output 8 channel and 8 digital input with SPI interface
- EPS-3032 analogue input 32 channel (+/-10V) with SPI interface
- EPS-3216 analogue input 16 channel (0~20mA) with SPI interface
- EPS-3504 RTD input thermal 4 channel with SPI interface
- EPS-4008 analogue output 8 channel with SPI interface
- EPS-7002 pulse output motion controller 2 channel with SPI interface_

JTAG adapter.

Ease of programming.

- JTAG Switch Module (JSM) in single mid/full size AMC form factor with onboard FPGA to adapt to any JSM pin-out at AMC type backplane connector (default N.A.T. pin out, others on request)
- JTAG download via MCH through Ethernet
- JTAG programming connector at front panel
- Automatic arbitration between JTAG Masters
- Target selection through JTAG information
- Overrule of automatic operation and dedicated selection of JTAG target by front panel elements
- Multiple JSM pinout configurations via FPGA

AMC extender

Easy of development

- AMC extender are passive extenders
- Front AMC extender module
- Rear µRTM extender module
- Enables access to AMC modules and signals
- Supports all fabric connectors
- available with additional power supply for development

